湖北仙童科技有限公司
全国咨询热线:0722-7600323

逆变器线圈图 逆变器电路图

发布时间:2024-02-15 06:40:27 人气:

逆变器电路图

上图是一个简单逆变器电路图,其原理如下:

C2是隔直电容,可以保护电路不过载,R2是振教荡调节电阻,大小为1-2欧,L1,L2是初级线圈,L3、L4是自振荡线圈,L5是输出线圈。

电源接通,电流通过R2限流,流经L3、L4中间抽头,再经两头尾抽头到功率管基极导通功率管,经L1、L2初级线圈,产生一次初级电流,再经变压器耦合,在L5形成次级电流,第一次振荡完成。在L1、L2形成电流同时,L3、L4也通过变压器形成第二次感应电流,再次导通功率管,这样这个自激振荡电路就这样振荡下去,直到断电或管子烧坏。

简单的逆变器电路图分析

这里介绍的逆变器(见图)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。

电路图

工作原理

这里我们将详细介绍这个逆变器的工作原理。

方波信号发生器(见图3)

这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路

这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路

由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图4所示。

MOS场效应管电源开关电路。

这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。

图5

MOS场效应管也被称为MOSFET,既MetalOxideSemiconductorFieldEffectTransistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

图6

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。

图7a图7b

对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。图8给出了P沟道的MOS场效应管的工作过程,其工作原理类似这里不再重复。

图8

下面简述一下用C-MOS场效应管(增强型MOS场效应管)组成的应用电路的工作过程(见图9)。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。

由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程(见图10)。工作原理同前所述。这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。这里需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。

制作要点

电路板见图11。所用元器件可参考图12。逆变器用的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏-源极间电阻为25毫欧。此时如果通过10A电流时会有2.5W的功率消耗。N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏-源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。所以在考虑散热器时应注意这点。图13展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接法。尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。

逆变器的性能测试

测试电路见图14。这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。其测试结果见电压、电流曲线关系图(图15a)。可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。以负载为60W的电灯泡为例:

假设灯泡的电阻不随电压变化而改变。因为R灯=V2/W=2102/60=735Ω,所以在电压为208V时,W=V2/R=2082/735=58.9W。由此可折算出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时输出电压为200V。

我想要一电压型逆变电路图

呵呵,典型的傻瓜逆变器电路图如下:

最简单的逆变器电路

最简单的逆变器电路:
下图是一个简单逆变器的电路图.其特点是共集电极电路,可将三极管的集电极直接安装在机壳上,便于散热.不易损坏三极管.,我的简单逆变器用了十多年了,没出现过一次烧管的事.现给大家介绍一下制作方法.
变压器的制作:
可根据自己的需要选用一个机床用的控制变压器.我用的是100W的控制变压器.将变压器铁芯拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的漆包线,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个4V的线圈为反馈线圈,线圈的层间用较厚的牛皮纸绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的.
可换一下接头.这样变压器就做好了. 电阻的选择.两个与4V线圈串联的电阻可用电阻丝制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由
于管子的参数不一致有时不起振,最好接一个. 三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了. 接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻.
调整完毕后就可以正常使用了. 我的逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.

逆变器接线图

逆变器接线图如下:

当闸刀开关朝上合闸时,使用市电;当闸刀开关向下合闸时,使用变电源供电。

每台逆变器都有接入直流电压数值,如12V,24V等,要求选择蓄电池电压必须与逆变器直流输入电压一致。例如,12V 逆变器必须选择12V蓄电池。

逆变器输出功率必须大于电器的使用功率,特别对于启动时功率大的电器,如冰箱、空调,还要留大些的余量。

逆变器接入的直流电压标有正负极。红色为正极(+),黑色为负极(—),蓄电池上也同样标有正负极,红色为正极(+),黑色为负极(—),连接时必须正接正(红接红),负接负(黑接黑)。连接线线径必须足够粗,并且尽可能减少连接线的长度。

扩展资料

注意事项

1)电视机,显示器,电动机等在启动时电量达到峰值,尽管转换器可以承受标称功率2倍的峰值功率,但有些功率符合要求的电器的峰值功率可能会超过转换器的峰值输出功率,引发过载保护,电流被关断。

2)在使用过程中,电瓶电压开始下降,当转换器DC输入端的电压降到10.4-11V时,报警器发出峰鸣声,此时电脑或其它敏感电器应及时关闭,若忽视报警声,转换器将在电压到9.7-10.3V时,自动关断,这样可以避免电瓶被过量放电,电源保护关断后,红色指示灯亮起;

3)应及时启动车辆,给电瓶充电,防止电量衰竭,影响汽车启动和电瓶寿命;

4)尽管转换器没有过压保护功能,输入电压超过16V,仍有可能损坏转换器;

5)连续使用后,壳体表面温度会上升到60℃,注意气流通畅,易受高温影响的物体应远离。

逆变器的线圈怎么绕

高频逆变器的变压器线圈绕制方法 :

首先用纸盒或塑料片根据铁芯面积做一个线圈架,然后在线圈架上绕线圈。先绕初级,初级绕好后,用电容器纸或牛皮纸绕三层,做为初次级的绝缘,再绕次级,次级两个54圈(这个变压器输入是220伏,输出是双27V)按照这样可以得出每圈是0.5V,也就是初级是440圈绕成的,次级绕好后再绕二层电容器纸或牛皮纸与铁芯绝缘,然后插铁芯,可以三片铁芯一起交叉插。铁芯插好后通电试验,如果电压符合要求,浇绝缘漆烘干,线圈的层与层之间可用电容器纸或牛皮纸绝缘。初级用薄纸,也可不用。

补充介绍:

高频逆变器通过高频DC/AC变换技术,将低压直流电逆变为高频低压交流电,然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电,最后通过工频逆变电路得到220V工频交流电供负载使用。高频逆变器的优缺点:高频逆变器采用的是体积小,重量轻的高频磁芯材料,从而大大提高了电路的功率密度,使得逆变电源的空载损耗很小,逆变效率得到了提高。通常高频逆变器峰值转换效率达到90%以上。但是其也有显著缺点,高频逆变器不能接满负荷的感性负载,并且过载能力差。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言