Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

源逆变器

发布时间:2026-02-07 16:50:32 人气:



无源逆变和有源逆变区别是什么?

无源逆变和有源逆变电路的区别表现在:连接形式不同、应用范围不同。

1、连接形式不同

有源逆变是将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电返送到电网。

无源逆变是逆变器的交流侧直接接到负载,即将直流电逆变成某一频率或可变频率的交流电供给负载。

2、应用范围不同

有源逆变应用于直流电机的可逆调速、绕线转子异步电机的串级调速、高压直流输电和太阳能发电等方面。

蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需要采用无源逆变电路。

工作原理

逆变电路采用三相桥式结构。由于采用负载换流方式,故桥中开关元件可采用普通晶闸管。其出端A、B、C经限流电感Lа、Lb和Lc与公共电网联结。此处三相电网作为逆变电路负载接受其馈入电能,桥中各晶闸管T1~T6均工作于开关状态,采用相控方式。

各晶闸管的导通时刻由加到各门极脉冲的相位决定。逆变桥可视为按一定时序依次轮番通断的6只开关。但在任何稳定导通状态中,桥中只有两支元件处于导通状态(其余为阻断状态)。

逆变器的分类

逆变器是一种将直流电能转换为交流电能的装置,其分类方式多种多样,以下是逆变器的详细分类:

1. 按输出交流电能的频率分

工频逆变器:频率为50~60Hz的逆变器,适用于大多数家用电器和工业设备。中频逆变器:频率一般为400Hz到十几kHz,常用于特定工业应用,如航空电源。高频逆变器:频率一般为十几kHz到MHz,适用于高频信号处理和小型化设备。

2. 按输出的相数分

单相逆变器:输出单相交流电,适用于家用和小型工业设备。三相逆变器:输出三相交流电,适用于大型工业设备和电力系统。多相逆变器:输出多于三相的交流电,用于特定的高性能应用。

3. 按输出电能的去向分

有源逆变器:将电能向工业电网输送,常用于可再生能源发电系统。无源逆变器:将电能输向某种用电负载,如家用电器或工业设备。

4. 按主电路的形式分

单端式逆变器:结构简单,但输出能力有限。推挽式逆变器:输出能力较强,适用于中等功率应用。半桥式逆变器:结构相对复杂,但性能稳定,适用于较高功率应用。全桥式逆变器:输出能力最强,适用于大功率应用。

5. 按主开关器件的类型分

晶闸管逆变器:属于“半控型”逆变器,不具备自关断能力。晶体管逆变器:包括“全控型”逆变器,如电力场效应晶体管和绝缘栅双极晶体管(IGBT),具有自关断能力。

6. 按直流电源分

电压源型逆变器(VSI):直流电压近于恒定,输出电压为交变方波。电流源型逆变器(CSI):直流电流近于恒定,输出电流为交变方波。

7. 按输出电压或电流的波形分

正弦波输出逆变器:输出电压或电流波形接近正弦波,适用于对波形要求较高的负载。非正弦波输出逆变器:输出电压或电流波形为非正弦波,如方波、梯形波等,适用于对波形要求不高的负载。

8. 按控制方式分

调频式(PFM)逆变器:通过调节频率来控制输出电压或电流。调脉宽式(PWM)逆变器:通过调节脉冲宽度来控制输出电压或电流,具有更高的效率和更好的性能。

9. 按开关电路工作方式分

谐振式逆变器:利用谐振原理进行工作,具有高效率和小体积的优点。定频硬开关式逆变器:开关频率固定,但开关过程中存在较大的损耗。定频软开关式逆变器:开关频率固定,但采用软开关技术,减小了开关过程中的损耗。

10. 按换流方式分

负载换流式逆变器:通过负载来实现换流,适用于特定应用。自换流式逆变器:具有自换流能力,无需外部负载即可实现换流,适用于大多数应用。

以下是逆变器的一种常见类型——IGBT逆变器的示例:

综上所述,逆变器具有多种分类方式,每种分类方式都反映了逆变器在不同方面的特性和应用。在选择逆变器时,需要根据具体的应用场景和需求来选择合适的类型。

一文看懂逆变器的17种主要类型

逆变器的17种主要类型

逆变器是将直流电(DC)转换成交流电(AC)的装置。根据应用的输入源、连接方式、输出电压波形等,逆变器主要分为以下17种类型:

一、按输入源分类

电压源逆变器(VSI):当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。其输入有一个刚性直流电压源,阻抗为零或可忽略不计。交流输出电压完全由逆变器中开关器件的状态和应用的直流电源决定。

电流源逆变器(CSI):当逆变器的输入为恒定直流电流源时,该逆变器被称为电流源逆变器。刚性电流从直流电源提供给CSI,其中直流电源具有高阻抗。交流输出电流完全由逆变器中的开关器件和直流施加电源的状态决定。

二、按输出相位分类

单相逆变器:将直流输入转换为单相输出,标称频率为50Hz或60Hz,标称电压有多种,如120V、220V等。单相逆变器用于低负载,损耗较多,效率比三相逆变器低。

三相逆变器:将直流电转换为三相电源,提供三路相角均匀分离的交流电。每个波的幅度和频率都相同,但每个波彼此之间有120度的相移。三相逆变器是高负载的首选。

三、按换向技术分类

线路换向逆变器:交流电路的线电压可通过设备获得,当SCR中的电流经历零特性时,器件被关闭。这种换向过程称为线路换向。

强制换向逆变器:电源不会出现零点,需要外部源来对设备进行整流。这种换向过程称为强制换向。

四、按连接方式分类

串联逆变器:由一对晶闸管和RLC(电阻、电感和电容)电路组成,负载在晶闸管的帮助下直接与直流电源串联。也称为自换相逆变器或负载换向逆变器。

并联逆变器:由两个晶闸管、一个电容器、中心抽头变压器和一个电感器组成。在工作状态下,电容器通过变压器与负载并联。

半桥逆变器:需要两个电子开关(如MOSFET、IJBT、BJT或晶闸管)才能工作。对于阻性负载,电路工作在两种模式。

全桥逆变器:具有四个受控开关,用于控制负载中电流的流动方向。对于任何负载,一次只有2个晶闸管工作。

三相桥式逆变器:由6个受控开关和6个二极管组成,用于重负载应用。

五、按操作模式分类

独立逆变器:直接连接到负载,不会被其他电源中断。也称为离网模式逆变器。

并网逆变器:有两个主要功能,一是从存储设备向交流负载提供交流电,二是向电网提供额外的电力。也称为公用事业互动逆变器、电网互联逆变器或电网反馈逆变器。

双峰逆变器:既可作为并网逆变器工作,也可作为独立逆变器工作。可以根据负载的要求灵活切换工作模式。

六、按输出波形分类

方波逆变器:将直流电转换为交流电的最简单的逆变器,但输出波形不是纯正弦波,而是方波。更便宜,但谐波失真较大。

准正弦波逆变器:输出信号以正极性逐步增加,然后逐步下降,形成阶梯正弦波。谐波失真较低,但仍不是纯正弦波,对某些负载可能不适用。

纯正弦波逆变器:将直流转换为几乎纯正弦交流。输出波形具有极低的谐波,是大多数电气设备的首选。

七、按输出电平数量分类

两电平逆变器:有两个输出电平,输出电压在正负之间交替,并以基本频率(50Hz或60Hz)交替。在某些情况下,可能将三电平逆变器(其中一个电平是零电压)归入此类。

多电平逆变器(MLI):将直流信号转换为多电平阶梯波形。波形的平滑度与电压电平的数量成正比,因此会产生更平滑的波形,适用于实际应用。

以下是部分逆变器的展示:

综上所述,逆变器根据不同的分类标准有多种类型,每种类型都有其特定的应用场景和优缺点。在实际应用中,需要根据具体需求选择合适的逆变器类型。

富士源逆变器优缺点

富士源逆变器的优缺点如下

优点稳定性好:富士源逆变器具有精密的控制功能和稳定的输出性能,在零负载和满负载状态下均能稳定运行,负载波动和温度变化对输出电压的影响较小。 效率高:相比传统的变压器和整流器,富士源逆变器的效率更高,能够更好地利用电能,提高能源利用效率,从而降低能源成本。 可靠性高:富士源逆变器在设计时充分考虑了各种工作条件和应用场景,具有较高的可靠性,能够长期稳定工作,减少设备维护和更换成本。

缺点成本高:由于富士源逆变器的生产工艺比传统的变压器和整流器复杂,因此其成本相对较高。对于工业和商业应用来说,可能会增加较高的投资成本。 需要冷却和散热:富士源逆变器在进行电能转换和调节工作时会产生较多的热量,因此需要进行散热和冷却措施。如果未能有效散热,可能会影响设备的正常工作和使用寿命。

逆变器受控电压源公式

逆变器受控电压源的核心控制公式为:Vout = m(a) * (Vdc/2),其中m为调制比,a为调制波相位角,Vdc为直流母线电压。

1. 核心公式解析

逆变器通过全控型功率器件(如IGBT)的开关动作,将直流电转换为交流电。其输出电压的幅值、频率和相位通过脉冲宽度调制(PWM)技术进行控制。受控电压源的数学模型可表述为:

$$V_{out} = m cdot frac{V_{dc}}{2} cdot sin(omega t + phi)$$

其中:

Vout: 输出交流电压的瞬时值

m: 调制比(0 ≤ m ≤ 1),直接决定输出电压幅值,其值为调制波峰值与载波峰值之比。

Vdc: 直流母线电压

ω: 输出角频率(ω=2πf,f为输出频率)

φ: 初始相位角

在闭环控制系统中(如用于并网逆变器),该公式是实现电压外环控制的核心。控制器通过采样输出电流,计算出当前所需的输出电压指令,再通过调节调制比m和相位角φ来精确控制PWM发生器。

2. 实现方式与技术要点

SPWM控制: 最基础的方法。通过三角载波与正弦调制波比较生成PWM驱动信号,输出电压基波幅值 $V_{out\_rms} = frac{m cdot V_{dc}}{2sqrt{2}}$。

SVPWM控制: 更先进的主流技术。通过控制逆变器空间电压矢量的合成与作用时间,使输出的电压波形更接近理想圆形旋转磁场,直流电压利用率比SPWM提高约15%。

闭环控制实现: 实际产品中,该公式嵌套在双环控制结构中。外环(电压环)根据给定与反馈的电压差值通过PI控制器生成电流指令;内环(电流环)快速跟踪电流指令,其输出即为用于PWM调制的电压指令信号,从而实现对公式中mφ的实时动态调节。

3. 关键设计参数

设计或选型时需关注以下参数,它们直接关联到公式的应用:

| 参数名称 | 典型要求或范围 | 说明 |

| :--- | :--- | :--- |

| 直流母线电压 (Vdc) | 如 600V, 800V | 决定了输出电压的理论最大值。 |

| 调制比 (m) | 0 ~ 1.15 (过调制) | 正常线性调制区为0~1,超过1进入过调制,输出电压谐波会增大。 |

| 输出频率 (f) | 50Hz / 60Hz 或 0~400Hz | 根据应用场景设定,由调制波频率决定。 |

| 开关频率 (fsw) | 4kHz ~ 20kHz+ | 载波频率,影响开关损耗和输出波形质量。越高则电流纹波越小。 |

| 总谐波畸变率 (THD) | <3% (并网应用) | 衡量输出电压波形质量的关键指标,由调制算法决定。 |

注意:实际操作和调试涉及高压电,具有触电风险,必须由专业人员在断电情况下进行,并严格遵守安全规范。

逆变器源极推挽的优点

逆变器源极推挽电路的核心优势在于结构精简且效能突出,尤其适合中大功率应用场景。

1. 电路架构简洁性

这种拓扑仅需两个开关管和一个带中心抽头的变压器,元件数量少,设计复杂度低。简化的结构降低了组装和调试难度,同时提升了系统的稳定性,故障排查也更为直观。

2. 能量高效转化

开关管交替导通的机制在负载匹配时表现出高转换效率。直流到交流的能量损耗被显著抑制,尤其在功率传输链中,避免了传统单端设计的能量滞留问题。

3. 大功率输出能力

双开关管协同工作可承载更高电流与功率阈值,配合变压器调压,既能适配低阻抗负载,也可通过匝比调整实现升压或降压,灵活覆盖工业设备、新能源系统等中大功率需求场景。

4. 磁芯双极性复用

变压器磁芯在正负半周均参与能量传递,磁性材料利用率提升约30%。相比单端电路,同功率下磁芯体积缩小,直接压缩了物料成本与设备空间占用。

5. 驱动友好性

两路开关管仅需一组相位互补的驱动信号,控制时序简单明确。这不仅降低驱动电路设计难度,还减少了因时序偏差导致的开关管损毁风险。

准z源逆变器工作原理

准正弦波逆变器通过阶梯波模拟正弦波,成本低且能满足大部分电器用电需求。

1. 核心工作原理分层解析

① 直流电输入阶段

输入端接入蓄电池等直流电源,12V/24V/48V等电压等级的电池组为设备提供初始电能,这是能量转换的源头。

② 高频脉冲生成环节

振荡电路产生50Hz或60Hz的基准频率脉冲,这个频率设置考虑了全球不同地区的交流电标准,通过调节占空比形成阶梯状排列的脉冲序列。

③ 波形调制优化过程

调制电路通过控制脉冲宽度和数量,将方波切割成4-7个台阶的阶梯波。每个电平台阶对应正弦波特定相位点的电压值,通过叠加不同宽度脉冲逐步逼近正弦曲线。

④ 功率放大输出阶段

采用MOSFET或IGBT功率管组成的桥式电路,将调制后的信号放大至220V交流电平。H桥拓扑结构交替导通四个开关管,形成正负半周电流。

2. 典型应用场景区分

适用设备:

- 阻性负载:白炽灯、电热毯等热效应设备

- 简单电机类:风扇、水泵等异步电机驱动设备

- 普通电子设备:CRT电视、非精密音响系统等

受限设备:

- 敏感电子设备:医疗监护仪、实验室仪器等需要纯净电源的设备

- 变频电机设备:变频空调、精密伺服电机等对谐波敏感的负载

- 带功率因数校正的电器:新型节能灯具、LED驱动电源等

波形失真度通常在20%-40%之间,相较纯正弦波逆变器15%以下的失真指标存在明显差异,这是其价格优势与技术取舍的平衡点。

什么叫有源逆变,无源逆变

1. 有源逆变:有源逆变电路是指将直流电能转换为交流电能,并向交流电源反馈能量的电路。这种电路通常用于将直流电能转换为50Hz或60Hz的交流电能,并馈入公共电网。有源逆变器是实现这一功能的装置。

2. 无源逆变:无源逆变电路是指交流侧不与电网连接,而是直接接入负载的逆变电路。这种电路将直流电逆变为某一频率或可调频率的交流电,以供给负载。

3. 有源逆变与无源逆变的区别:逆变电源将直流电逆变成交流电。有源逆变和无源逆变是两种不同的逆变方式。例如,通过一个单相H型晶闸管桥电路,可以实现直流电压到交流电压的转换。在生产实践中,无源逆变电路常用于将工频交流电能或直流电能变换成频率和电压都可调节的交流电能,以供给负载。除非特别指明为有源逆变电路,否则电力电子电路通常指的是无源逆变电路。

PLECS 应用示例(78):三相电压源逆变器(Three-Phase Voltage Source Inverter)

三相电压源逆变器(VSI)模型展示了一个从直流电压源产生交流电流和电压的逆变器电路。此模型设计用于实现10千瓦的额定功率,并提出了三种不同的脉宽调制(PWM)方案来控制VSI输出。

直流电压源提供700伏的电压,代表系统中的电池、太阳能阵列或整流器。逆变器连接到230Vrms、50Hz的低压电网,电网表示为刚性交流电压源。并网电抗为基础阻抗的10%,并包含小电阻来模拟电感器损耗。电感器电流被初始化为单位功率因数下10kW的期望额定功率,以避免启动期间的瞬态。

可配置子系统“控制器Controller”包含三种常见的PWM方法:正弦PWM、空间矢量(SV)PWM和滞后PWM。选择不同的调制器类型将呈现不同的控制参数。通常,VSI输出端电压或参考电流将使用闭环控制方法动态计算,但在模型中使用固定值。正弦和SV PWM配置中,参考信号是VSI输出端子处的期望平均电压,VSI输出电流与电网电压相位差决定了输出电压幅度和角度。正弦PWM实现使用对称PWM组件,其采样参数配置对调制指数输入进行采样的不同方式。滞后PWM是一种电流控制的PWM方案,调节逆变器的输出电流至恒定迟滞带内的参考电流。

模型配置了运行多个实验,比较每个调制器的性能。通过检查输出波形、总谐波失真(THD)、谐波频谱分析和磁滞带,可以比较每种调制策略产生的谐波。

通过比较,发现SV PWM在输出端产生的谐波失真较小,与相同开关频率的正弦PWM相比。正弦PWM和SV PWM方案的主谐波以开关频率的整数倍为中心,而磁滞PWM产生的谐波是非周期性的,并在谐波频谱中具有频率含量。

模型讨论了无调节三相VSI的运行,并实现了三种调制技术,比较了每种调制策略产生的谐波。此模型授权英富美(深圳)科技有限公司提供翻译与发表,所有权属于瑞士商Plexim GmbH所有。如有任何用途,请先获得所有权人允许。

光伏逆变器是电流源还是电压源?

光伏并网逆变器通常采用电流源并网的方式,这种方式在电力系统中有着广泛应用,能够有效地控制电流输出,适应光伏系统的特性。然而,也有少数光伏并网逆变器采用电压源并网,这种设计在特定条件下能提供更稳定的电压输出,适应不同负载需求。

离网型逆变器,或者说控制逆变一体机,主要采用电压源的方式工作。这种逆变器不依赖于电网,而是将太阳能电池板产生的直流电转换为交流电,直接供给家庭或小型商业设施使用。电压源的逆变器能够提供稳定的电压输出,确保负载设备的正常运行。

电流源逆变器和电压源逆变器在工作原理上有显著差异。电流源逆变器主要通过控制输出电流来调节功率,而电压源逆变器则侧重于控制输出电压。电流源逆变器适用于需要精确控制电流的应用场景,而电压源逆变器则在稳定性要求较高的场合表现出色。

选择电流源或电压源逆变器,取决于具体应用场景的需求。例如,在光伏并网系统中,电流源逆变器能够更好地与电网协同工作,确保电力系统的稳定运行。而在离网型系统中,电压源逆变器能够提供更加稳定可靠的电力输出,保障负载设备的正常运行。

总之,无论是电流源还是电压源逆变器,都是为了实现高效的能量转换和稳定的电力输出。根据不同的应用场景,选择合适的逆变器类型,才能实现最佳的性能和效果。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言