湖北仙童科技有限公司
全国咨询热线:0722-7600323

逆变器控制技术研究 汽车逆变器的功能及工作原理(新能源逆变器工作原理详解)

发布时间:2024-01-07 07:20:23 人气:

汽车逆变器的功能及工作原理(新能源逆变器工作原理详解)

随着新能源汽车的发展,消费者 对新能源汽车的认可度越来越高。与传统燃油汽车的关键部件不同,新能源汽车的关键部件是 quot三电 quot系统,即电池、电子控制和电机。其中,电控作为连接电池和电机的桥梁,负责将电池的直流电转化为电机所需的交流电。电控的技术名称是逆变器,在电动车行业俗称电机控制器。承担控制电机驱动和电气制动的任务。
众所周知,直流电是恒定的,而交流电是交变的。DC和AC之间的转换是如何完成的?
DC波形和交流波形
DC和交流电之间的转换需要控制两个特性,一个是电流的方向,一个是电流的大小。电动车逆变电路等效电路如下图所示。我们把动力电池等效为电池,把电机简化为负载。
等效电路
从下图可以看出,电流方向的改变可以通过闭合和打开开关的组合来实现。从而实现改变交流电方向的目的。
电流方向
电流方向
交流电有频率。如果电机要求的交流电频率为50Hz,则意味着上述开关需要在1秒钟内完成50次周期性变化。然而,实际上没有这样的开关。实际上,我们用MOSET管代替开关。MOSET管的最高频率可以达到1000KHz,可以满足实际工艺中的频率要求。
Moset管
Moset管电路
解决了电流方向和频率的问题后,直流电的大小如何与交流电等效?通过 quot在 quot和 quot关闭 quotMOSET管的,可以实现有无电流,从而输出方波。开关闭合时输出恒定值,开关断开时输出值为0。如下图所示,绿色波形为方波。
直流方波
上图中的红框显示的是一段方波。可以看出,周期的平均值随着高电平和低电平的比例而变化。青色波形是一个周期内方波的平均值。可以看出,一个周期内的常数时间越长,平均值越高。最后,上部方波的平均波形成为下部波形。
通过开关的组合改变电流方向,整个周期中的波形如下
可以看到,通过开关的组合和开关时间的变化,由方波组合出一个类似正弦波的波形。如果减少每个方波的周期时间,曲线会越来越平滑,平均方波会无限接近正弦波。这个处方波的平均波形的效果相当于正弦波的效果,完成了从DC到交流的逆变。
最后,还有一个问题。在实际的逆变过程中,我们如何知道一个方波周期中高电平和低电平各占多少?在实际的波形调制过程中,需要一个叫做比较器的电子元件,利用比较器的输出信号来控制MOSET管的开关。等效电路图见下图。图中大三角是比较器,小三角是二极管。二极管的作用是防止同一支路的开关同时导通而造成短路。
调制电路
将三角波和正弦波两种波形输入比较器进行比较。见下图。
比较波形
当正弦波小于三角波时,比较器输出0,当正弦波大于三角波时,比较器输出1。这样,匹配正弦波特性的方波控制信号可以被输出和输入到MOSET管。输出为1时控制其导通,输出为0时控制其关断,这样就可以根据信号控制开关输出想要的等效逆变波形,最终控制电机旋转,从而完成整个逆变过程。
01
王者之心2点击试玩

逆变技术的技术特点

用途:可用在电脑、电视、应急灯、电扇、手机充电器、录音机等各种电器上。
分类:按照输出功率的不同,可分为75W、90W、120W、300W、500W、1000W、2000W、5000W等等。
安全性能: 1.电压过高保护:当输入电压高于15.5V时,电路自动断开保护。 2.电压过低保护:当输入电压低于10.0V时,电路自动断开保护。 3.短路保护:当发生短路状态时,电路自动断开保护。 4.过热保护:当温度过高时,电路自动断开保护。 UPS是不间断电源(Uninterruptible Power System)的英文简称,是能够提供持续、稳定、不间断的电源供应的重要外部设备。
原理:UPS是一种集数字和模拟电路,自动控制逆变器与免维护贮能装置于一体的电力电子设备;
功能:UPS可以在市电出现异常时,有效地净化市电;还可以在市电突然中断时持续一定时间给电脑等设备供电,使你能有充裕的时间应付;
用途:随着信息化社会的来临,UPS广泛地应用于从信息采集、传送、处理、储存到应用的各个环节,其重要性是随着信息应用重要性的日益提高而增加的。
注意事项:
1)UPS的使用环境应注意通风良好,利于散热,并保持环境的清洁。
2)切勿带感性负载,如点钞机、日光灯、空调等,以免造成损坏。
3)UPS的输出负载控制在60%左右为最佳,可靠性最高。
4)UPS带载过轻(如1000VA的UPS带100VA负载)有可能造成电池的深度放电,会降低电池的使用 寿命,应尽量避免。
5)适当的放电,有助于电池的激活,如长期不停市电,每隔三个月应人为断掉市电用UPS带负载放电一次,这样可以延长电池的使用寿命。
6)对于多数小型UPS,上班再开UPS,开机时要避免带载启动,下班时应关闭UPS;对于网络机房的UPS,由于多数网络是24小时工作的,所以UPS也必须全天候运行。
7)UPS放电后应及时充电,避免电池因过度自放电而损坏。

逆变电源数字控制算法应用国内外的研究现状是什么?

从国内外研究状况来看,目前,国外知名企业,如山特、台达、东芝、梅兰日兰等,在逆变器的数字控制方面的研究比较多,许多先进的技术已应用到了实际的系统中,生产出了许多知名品牌。他们能够生产从几百伏安到几千伏安的逆变器,其电源性能和可靠性都已经达到了很高的水平。相对来说,国内的逆变器数字控制方面的发展就晚的多,目前大多数生产厂家主要是还是以模拟加数字的控制方式为主,全数字控制方面的研究还较少,主要集中在一些知名公司和重点院校,如华中科技大学、南京航空航天大学;且大多数研究还处于实验阶段,仅有少部分用于逆变电源系统中。从目前国内市场来看,由于国内逆变器的生产厂家基本上不能生产大功率逆变电源,所以国内大功率逆变电源的市场几乎全部被国外各大公司占有。对于中小功率逆变电源来说,虽然国内许多厂家可以生产,并占有一定的市场,但是其产品性能和可靠性远不如国外同类产品,输出电压受负载变化影响很大,故加强逆变电源先进控制技术的应用研究具有十分重要的理论意义和实用价值。

单相逆变器多环反馈控制

摘要:应用了一个多环反馈控制策略来调节不间断电源逆变器的输出。分析了这种控制策略的时域与频域特性。最后给出了仿真和实验波形,结果证明了这种控制方法对线性负载和整流桥负载都有很好的控制效果。
关键词:逆变器;多环反馈;数字控制0 引言
过去对逆变器的研究侧重于采用新型高频开关功率器件,从而减小滤波器尺寸,优化输出滤波器设计以实现低输出阻抗等,这些措施能在一定程度上抑制输出波形失真并改善负载适应性,但是还不够理想。为了进一步提高逆变器的动态和静态特性,必须采用新的控制方法。采用重复控制技术,可以较好地抑636f70793231313335323631343130323136353331333236363030制周期性干扰,但是,重复控制延时一个工频周期的控制特点,使得单独采用重复控制的逆变器动态特性极差,基本上无法满足逆变器的指标要求。如果将双环控制和重复控制相结合形成复合控制方法,就可以达到较好的效果。但是,这种控制方法要占用较多的运算时间,提高了成本,使系统变得复杂。具有非线性补偿的滑模控制在逆变器的闭环控制中也得到了应用,尽管滑摸控制有着快速的动态响应,对系统参数和负载变化不敏感,但是建立一个令人满意的滑模面是很困难的。 电容电流采样的双环控制可以极大地提高系统的动态反应速度,如果把顺馈控制和逆馈控制相结合,组成复合控制系统,那么可以达到比较理想的控制效果。本文所采用的就是这种带有顺馈补偿的输出电压和滤波电容电流反馈的复合控制方案。l 逆变器的控制模型
图1是全桥逆变器的主电路图,Vd是直流电压源,S1~S4是4个IGBT开关管,L和C是滤波电感和滤波电容,用于滤除逆变系统中的高次谐波。RL和RC是滤波电感和滤波电容的等效串联阻抗。z是负载,负载可以是纯阻性也可以是非线性等。图1所示的逆变器主电路由于开关器件的存在是个非线性系统。但是,当器件的开关频率远远大于逆变器输出电压的基波频率时,可以用状态空间平均和线性化技术来分析。按照图1所示,可以得到下面的逆变器模型的动态方程:式中:iC,iL,iZ,分别是通过电感,电容,负载的电流。
式中:ic,iL,iz上面的动态方程显示了逆变器中各个量的相互关系。在上面建立方程的过程中,逆变器可以看作一个具有恒定增益的放大器。以上述的动态方程为基础,可以设计一个如图2所示的复合控制器。图2中各参数的定义如表1所列。2 控制器模型的特性分析
在图2控制框图中,电压环作为逆馈瞬时控制外环,电流环作为逆馈瞬时控制内环。逆变器输出电压经过比例环节与参考电压比较,误差经过PI调节后作为电流控制内环的一部分基准,另一部分基准来自于参考电压的顺馈,这个复合基准与来自比例环节的电容电流比较后,再经过比例调节和放大环节就得到了逆变器开关管的输出电压。为了能够更清楚地分析上面的控制原理,现在采用下面的工程化分析方法,即 1)由于电压和电流逆馈环节的滤波常数很小,将其忽略;
2)滤波电感和滤波电容的等效串联阻抗对电路性能的影响较小,也将其忽略;
3)以线性电阻为负载对象分析。
取PI调节函数为可以对Uref实现误差为零的复现(证明略)。利用上面的分析,可以把图2化简为图3。这样,得到逆变器的开环传递函数为:其极点和零点为通常则式(5)可以化简为根据上面的函数表达式,作出的闭环根轨迹如图4所示。图4中虚线部分是电压瞬时值反馈控制的根轨迹,实线是本文所采用的复合控制的根轨迹图。图4(a)和图4(b)分别是轻载和满载的轨迹图。从图4中可以看出,本文所采用的控制方案由于在开环传递函数中引入的附加零点,使闭环系统的根轨迹远离虚轴,大大增加了系统的稳定性。而且!萼笋的值比较大,因此可以减少系统的调节时间,又不会造成系统较大的超调。3 仿真与实验
图5~图8是用逆变器验证上面的控制方案的仿真结果。图中的切换都是选在正弦波的波峰处,这种情况代表了切换的最大电压崎变。图中所示波形的动态调整时间小于0.5ms,稳态整流桥负载THD为1%。图9和图10是系统的开环和闭系统的相位裕度大于60℃,为数字控制的滞后,死区效应,滤波器的滞后特性等留有足够的稳定裕量。而且调节时间很快,通带内增益稳定,且相移很小。4 结语
分析了一个用于逆变器的复合控制技术,控制原理分析以及仿真和实验结果表明,这种控制方法稳定性好,稳态和动态性能优良,是一个值得推广应用的逆变器控制技术。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言