发布时间:2025-08-27 03:50:56 人气:
光伏逆变器数据采集方案
光伏逆变器数据采集方案
光伏逆变器数据采集是光伏电站运维和数据分析的重要环节。针对光伏逆变器数据采集的需求,以下是一个综合考量通讯方式、设备兼容性、运维效率及数据管理平台的方案。
一、通讯方式选择
光伏逆变器数据采集的通讯方式多样,包括4G、485、以太网、LORA、WiFi等。每种通讯方式都有其优缺点,需根据具体应用场景进行选择:
485总线:适用于短距离、低成本的数据传输,但拉线距离长时易受干扰,且总线后端数据可能因线路故障无法收集。网线(以太网):传输速度快,稳定性高,但拉线工作量大,建设改造成本高。4G:无需布线,覆盖范围广,但需支付运营商费用,且在偏远地区可能无信号覆盖。WiFi:传输速度快,但通讯距离短,绕射性能弱,易受环境因素影响。LORA:通讯距离长,适用于偏远或难以布线区域,但网关架设繁琐,可能存在盲区,补盲成本高。综合考虑以上因素,推荐采用LORA mesh通讯方式。LORA mesh通讯方式具有通讯距离长、网络利用率高、可解决网络撞包问题等优点,且通过255mesh的多跳协议完美解决了盲区问题。
二、设备兼容性处理
针对老项目改造中逆变器种类、通讯协议各不相同的问题,可采取以下措施:
统一通讯协议:尽可能选择支持标准通讯协议的逆变器,如Modbus等,以便实现数据的统一采集和传输。通讯协议转换:对于不支持标准通讯协议的逆变器,可通过通讯协议转换设备将其转换为支持的标准协议。采集指令配置:LORA mesh通讯方式支持网关下发统一采集指令,下端MCU可配置采集命令,以适应不同逆变器的数据采集需求。三、运维效率提升
为提高运维效率,可采取以下措施:
数字化运维:建立数字化运维平台,实现远程监控、故障诊断和数据分析等功能,减少运维人员工作量。智能预警:通过数据分析算法对逆变器运行数据进行实时监测和分析,及时发现潜在故障并发出预警信号,提高运维响应速度。运维人员培训:定期对运维人员进行培训和技术更新,提高其专业技能和运维效率。四、数据管理平台建设
为实现数据的统一管理和分析,需建设数据管理平台。数据管理平台应具备以下功能:
数据采集与存储:实现逆变器数据的实时采集和存储,确保数据的完整性和准确性。数据分析与挖掘:通过数据分析算法对采集到的数据进行处理和分析,挖掘数据背后的价值,为运维决策提供支持。数据可视化:将分析结果以图表、报表等形式直观展示,便于运维人员理解和使用。数据安全与备份:建立完善的数据安全机制,确保数据不被泄露或损坏,并定期进行数据备份以防止数据丢失。五、方案实施效果
采用LORA mesh通讯方式的光伏逆变器数据采集方案具有以下优势:
高效稳定:LORA mesh通讯方式具有通讯距离长、网络利用率高、稳定性好等优点,可确保数据的实时采集和传输。兼容性强:通过通讯协议转换和采集指令配置等措施,可适应不同逆变器的数据采集需求。运维便捷:数字化运维平台和智能预警系统可提高运维效率和质量,降低运维成本。管理智能:数据管理平台可实现数据的统一管理和分析,为运维决策提供支持,提高光伏电站的运营效益。六、附图说明
综上所述,采用LORA mesh通讯方式的光伏逆变器数据采集方案具有高效稳定、兼容性强、运维便捷和管理智能等优点,是光伏电站数据采集和运维管理的理想选择。
什么叫光伏“四可”设备及工商业分布式光伏、户用光伏“四可”设备远动通讯屏方案
光伏“四可”设备是指满足可观、可测、可调、可控要求的光伏设备。对于工商业分布式光伏和户用光伏,“四可”设备远动通讯屏方案则是指通过特定的设备和系统架构,实现光伏电站数据的远程采集、监控、调节和控制。
一、什么是“四可”?可观:实现低压分布式光伏统计数据、运行状态、调节控制、异常告警的全景可视化展示。通过构建低压分布式光伏采集通信架构,建立采集终端、分布式电源接入单元、智能电能表、光伏专用断路器、光伏逆变器等设备运行状态监测体系,形成低压分布式光伏台区线路拓扑图,使运维人员能够直观了解光伏电站的运行情况。
可测:实现低压分布式光伏用户数据分钟级采集,包括全部低压分布式光伏用户15分钟级负荷数据全采集,以及重要台区光伏用户及关键数据的1分钟级采集。这有助于提升低压分布式光伏发电负荷预测的准确度,实现分布式光伏发电的实时感知、运行监测和异常分析。
可调:应用群调群控装置和分布式电源接入单元/智能物联电能表等产品方案,建立柔性调节能力,实现低压分布式光伏功率和电压柔性可调。这意味着电网可以根据需要调节光伏电站的输出功率,以满足电网的稳定运行需求。
可控:应用光伏专用断路器建立刚性控制能力,实现全部低压分布式光伏用户刚性可控。在紧急情况下,电网能够断开并网开关,以保障大电网的电压与频率的安全稳定。
二、工商业分布式光伏“四可”远动通讯屏方案该方案主要包括以下设备:
RCL-0923远动通信“四可”设备主机:该装置集成了群调群控AGC/AVC、远动通讯、逆变器协议转换器等多功能于一体,能够实现并网柜、逆变器的数据采集与控制,并将光伏电站数据上传到供电局调度系统主站。
加密装置:用于与供电局主站通信时的数据报文加密,确保数据传输的安全性。
5G路由器:在没有光纤通信的情况下,实现光伏场站的数据远传。但大多数场站都采用光纤通信。
其他辅助装置:如时间同步装置、电能质量装置、公共测控装置等,根据具体需求进行配置。
展示:
三、户用光伏“四可”解决方案对于户用光伏,可以采用融合终端/或采集装置+光伏698协议转换器来实现“四可”要求。
RCL-0923D光伏6.9.8协议转换器:该设备内置了国内10余种逆变器的通信规约,基本支持在网运行的逆变器协议,实现了即插即用。除了具备逆变器协议转换功能外,还具备并网点电压电流采集、并网开关遥控等功能。安装接线方便,调试简单。综上所述,光伏“四可”设备及工商业分布式光伏、户用光伏“四可”设备远动通讯屏方案是实现光伏电站高效、稳定运行的重要技术手段。通过这些方案的应用,可以实现对光伏电站的全面监控和调节,提高电网的稳定性和可靠性。
光伏并网逆变器mppt的功率跟踪范围多大?
大功率逆变器MPPT最大功率跟踪范围是420-850V,也就是说直流电压420V的时候输出功率达到100%。
简单讲:峰值电压(DC420V)转换成和交流电有效电压,乘以转换系数获得(AC270V),该系数与输出侧电压调压范围及脉宽输出占空比有关。
270的调压范围(-10%至10%)那么:直流侧DC420V时的输出电压最高值为AC297V;获得AC297V交流电有效值,直流电压(交流电峰值电压)为297*1.414=420V;反过来计算就可以得到AC270V;其过程是:DC420V直流电经开光关(IGBT、IPM等),进行PWM(脉宽调制)控制,再通过滤波后得到交流电的。
浅谈光伏逆变器最大功率点追踪MPPT与电流采集
浅谈光伏逆变器最大功率点追踪MPPT与电流采集
光伏逆变器作为光伏发电系统的核心组件,不仅负责将光伏阵列产生的直流电转换为安全平稳的工频交流电,还承担着确保光伏组件在最大功率点工作的重任,以最大化发电效率。本文将从最大功率点追踪(MPPT)技术和电流采集两个方面进行浅谈。
一、最大功率点追踪(MPPT)
光伏组件的最大功率点
光伏组件的输出特性是非线性的,存在一个特定的工作点,即最大功率点(Pmax),在该点光伏组件的电压(Ump)与电流(Imp)的乘积达到最大值。为了使光伏组件的发电效率最大化,逆变器需要具备MPPT功能,使组件始终工作在最大功率点。
MPPT技术原理
MPPT功能通常通过控制电路发出PWM信号对DC/DC变换过程进行调节来实现。其基本原理是通过调节负载阻抗(或等效地,通过DC-DC变流器调节光伏组串的等效负载阻抗),使光伏组件的输出功率达到最大。在实际应用中,由于负载阻抗往往是不受控的,因此通过在光伏组串与负载之间添加DC-DC变流器来调节等效负载阻抗,从而实现MPPT。
MPPT控制器一般采用两种控制方法:电压控制法和直接控制法。电压控制法通过比较参考电压信号(由MPPT算法生成)与当前采集的电压信号,将结果传递给PI控制器,得到DC-DC占空比,进而生成PWM控制DC-DC。而直接控制法则直接通过MPPT算法生成占空比,继而生成PWM,无需设计PI控制器,实现难度和成本较低。
二、电流采集
电流检测的重要性
MPPT控制的精度不仅受内部算法性能影响,还依赖于逆变器检测回路中的传感器对于各输入输出电流电压的采集精度。因此,电流采集在MPPT过程中起着至关重要的作用。
电流传感器
逆变器检测回路中的电流传感器通常采用高精度闭环磁通门电流传感器或开环霍尔传感器。这些传感器能够精确采集电流信号,为MPPT算法提供准确的数据输入。例如,巨磁智能技术有限公司自主研发的高精度闭环磁通门电流传感器,检测精度达到千分之七,检测线性度达到千分之一,可为光伏逆变器MPPT电路设计提供高精度的电流数据采集。
电流检测方案
为了满足逆变器组串端与交流输出端的电流检测需求,通常采用多种传感器组合的方案。例如,巨磁智能技术有限公司提供的开环霍尔电流传感器ME、MG系列以及漏电流传感器RCMU101SN系列,能够满足逆变器在不同应用场景下的电流检测需求,为光伏逆变器设计打造极具性价比的电流检测整体方案。
总结
光伏逆变器的最大功率点追踪(MPPT)技术和电流采集是实现高效光伏发电的关键环节。通过精确调节负载阻抗或等效负载阻抗,MPPT技术能够使光伏组件始终工作在最大功率点,从而最大化发电效率。而高精度的电流采集则为MPPT算法提供了准确的数据输入,确保了MPPT控制的精度和稳定性。在实际应用中,应选择合适的电流传感器和检测方案,以满足光伏逆变器在不同应用场景下的需求。
分布式光伏发电量监控数据和电表的计量数据是一样的吗?误差有多大?
逆变器通过传感器计量、计算得到的发电量 和电表的发电量存在一定的误差。
一是因为逆变器的计量精度 和电表的计量精度不一样,伏并网系统使用的监控设备往往是系统建设单位自己采用的设备,而电表计量设备往往是电力部门安装的设备,因此设备不同,得到的数据可能会有一些差距。
二是光伏发电在传输过程中会有不同的线损,到达并网点的电表时计量到的电能并不是逆变器输出端计量到的电能,
但两者误差要控制在一定范围内,误差太大,可能是系统导致发电量偏低。
光伏逆变器测试系统有哪些功能?
光伏逆变器测试系统具备以下关键功能:
兼容性
单相和三相逆变器测试:系统能够兼容并测试单相和三相逆变器,满足不同类型逆变器的测试需求。
离网和并网模式测试:无论是离网还是并网模式,系统都能进行准确测试,确保逆变器在不同工作模式下的性能稳定。
裂相情况应对:系统具备处理裂相情况的能力,提高了测试的适用性和通用性。
精确的测量能力
高精度传感器:系统采用高精度传感器,能够精确捕捉逆变器运行中的微小参数变化。
关键参数测量:可对逆变器的电压、电流、功率等关键参数进行精确测量与分析,为性能评估提供详实、准确的数据支持。
灵活的软件平台
个性化测试需求:用户可根据实际需求灵活选择和配置硬件设备,满足个性化测试需求。
测试项目编辑:用户可自行编辑测试项目、调整测试参数,适应不同型号和规格的逆变器测试要求。
自动生成测试报告:测试软件具备自动生成测试报告的功能,提高了测试工作的效率和便捷性。
集成化的通讯功能
多种通讯指令集成:系统集成多种通讯指令,实现与逆变器的高效通讯。
实时数据获取与校准:通过参数读取和校正功能,实时获取逆变器运行数据并进行精确校准,确保测试数据的准确性。
远程监控与调整:能够对逆变器运行状态进行远程监控和调整,提升系统的智能化水平和管理效率。
高精度与稳定性
高精度硬件设备:标配硬件设备具备高精度、快速响应和稳定可靠的特性。
长时间稳定运行:即使在复杂测试环境下,系统也能持续提供准确、稳定的测试结果,为光伏逆变器质量检测提供有力保障。
安全保护功能测试
故障模拟功能:系统具备强大的故障模拟功能,能够模拟电网故障、短路、过载、孤岛效应等实际故障场景。
保护功能验证:通过模拟故障场景,测试逆变器的保护功能是否能够及时、准确地动作,如切断与电网的连接等,以避免对电网和设备造成损害。
提高安全性与稳定性:通过反复的故障模拟和保护测试,能够验证逆变器保护功能的可靠性和有效性,提高光伏发电系统的安全性和稳定性。
综上所述,光伏逆变器测试系统是一套功能全面、性能卓越的测试设备,能够准确检测光伏逆变器在不同工况下的性能指标,为光伏产业的高效发展提供有力保障。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467