Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

三相逆变器工作频率

发布时间:2025-08-18 15:00:29 人气:



说明一下电机控制的逆变器是如何通过pwm技术调整输出三相交流电的频率和电压

一、复合型AC-AC电路

复合型AC-AC电路能够实现三相输出电压的幅值和频率的同时改变。这种电路在交流电机调速、变频器和其他需要调节电压和频率的应用中非常重要。

二、如何改变幅值和频率

1. 改变幅值:

幅值的改变通常通过脉冲宽度调制(PWM)技术实现。控制电路将输入信号转换为PWM信号,通过调整脉冲宽度来控制输出电压的幅值。具体操作是,控制电路接收输入信号,并将其转换为脉冲信号,随后通过改变脉冲宽度来调整输出电压的幅值。

2. 改变频率:

频率的改变则通常通过变频器实现。控制电路首先将输入电源转换为直流电源,然后将直流电源转换为频率可调的交流电源,以此来控制输出电压的频率。具体来说,控制电路接收到输入电源,并将其转换为直流电源,随后再将直流电源转换为频率可调的交流电源,从而实现输出电压频率的控制。

三、需要注意的问题

复合型AC-AC电路的控制电路设计复杂,需要精确的控制算法和电路设计。此外,电路在实际运行中可能会遇到噪声、温度等问题,因此在设计和使用时需要特别注意这些问题。

四、举例说明

以一种基于PWM和变频器的电路设计为例,可以说明如何实现三相输出电压幅值和频率的同时改变。该电路主要由PWM模块、直流-交流变换模块和变频器模块组成。

1. PWM模块:

PWM模块负责控制输出电压的幅值。它接收控制信号,并将输入电压转换为PWM信号。通过调整PWM信号的占空比,可以实现输出电压幅值的控制。

2. 直流-交流变换模块:

直流-交流变换模块负责将PWM信号转换为交流电压。它接收PWM信号和直流电源,并使用逆变器将直流电源转换为可控制的三相交流电压输出。

3. 变频器模块:

变频器模块负责控制输出电压的频率。它接收控制信号,并将输入电源转换为频率可调的交流电源。变频器模块可以采用多种技术实现,如电压-频率(V/F)控制技术或矢量控制技术。

通过上述三个模块的协同工作,可以实现三相输出电压幅值和频率的同时改变。例如,通过增加PWM信号的占空比来增加输出电压的幅值,或者通过改变变频器的频率来改变输出电压的频率。

一文看懂逆变器的17种主要类型

逆变器的17种主要类型

逆变器是将直流电(DC)转换成交流电(AC)的装置。根据应用的输入源、连接方式、输出电压波形等,逆变器主要分为以下17种类型:

一、按输入源分类

电压源逆变器(VSI):当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。其输入有一个刚性直流电压源,阻抗为零或可忽略不计。交流输出电压完全由逆变器中开关器件的状态和应用的直流电源决定。

电流源逆变器(CSI):当逆变器的输入为恒定直流电流源时,该逆变器被称为电流源逆变器。刚性电流从直流电源提供给CSI,其中直流电源具有高阻抗。交流输出电流完全由逆变器中的开关器件和直流施加电源的状态决定。

二、按输出相位分类

单相逆变器:将直流输入转换为单相输出,标称频率为50Hz或60Hz,标称电压有多种,如120V、220V等。单相逆变器用于低负载,损耗较多,效率比三相逆变器低。

三相逆变器:将直流电转换为三相电源,提供三路相角均匀分离的交流电。每个波的幅度和频率都相同,但每个波彼此之间有120度的相移。三相逆变器是高负载的首选。

三、按换向技术分类

线路换向逆变器:交流电路的线电压可通过设备获得,当SCR中的电流经历零特性时,器件被关闭。这种换向过程称为线路换向。

强制换向逆变器:电源不会出现零点,需要外部源来对设备进行整流。这种换向过程称为强制换向。

四、按连接方式分类

串联逆变器:由一对晶闸管和RLC(电阻、电感和电容)电路组成,负载在晶闸管的帮助下直接与直流电源串联。也称为自换相逆变器或负载换向逆变器。

并联逆变器:由两个晶闸管、一个电容器、中心抽头变压器和一个电感器组成。在工作状态下,电容器通过变压器与负载并联。

半桥逆变器:需要两个电子开关(如MOSFET、IJBT、BJT或晶闸管)才能工作。对于阻性负载,电路工作在两种模式。

全桥逆变器:具有四个受控开关,用于控制负载中电流的流动方向。对于任何负载,一次只有2个晶闸管工作。

三相桥式逆变器:由6个受控开关和6个二极管组成,用于重负载应用。

五、按操作模式分类

独立逆变器:直接连接到负载,不会被其他电源中断。也称为离网模式逆变器。

并网逆变器:有两个主要功能,一是从存储设备向交流负载提供交流电,二是向电网提供额外的电力。也称为公用事业互动逆变器、电网互联逆变器或电网反馈逆变器。

双峰逆变器:既可作为并网逆变器工作,也可作为独立逆变器工作。可以根据负载的要求灵活切换工作模式。

六、按输出波形分类

方波逆变器:将直流电转换为交流电的最简单的逆变器,但输出波形不是纯正弦波,而是方波。更便宜,但谐波失真较大。

准正弦波逆变器:输出信号以正极性逐步增加,然后逐步下降,形成阶梯正弦波。谐波失真较低,但仍不是纯正弦波,对某些负载可能不适用。

纯正弦波逆变器:将直流转换为几乎纯正弦交流。输出波形具有极低的谐波,是大多数电气设备的首选。

七、按输出电平数量分类

两电平逆变器:有两个输出电平,输出电压在正负之间交替,并以基本频率(50Hz或60Hz)交替。在某些情况下,可能将三电平逆变器(其中一个电平是零电压)归入此类。

多电平逆变器(MLI):将直流信号转换为多电平阶梯波形。波形的平滑度与电压电平的数量成正比,因此会产生更平滑的波形,适用于实际应用。

以下是部分逆变器的展示:

综上所述,逆变器根据不同的分类标准有多种类型,每种类型都有其特定的应用场景和优缺点。在实际应用中,需要根据具体需求选择合适的逆变器类型。

三相spwm逆变电路开关频率为100hz对嘛?

没有这么低的逆变器开关频率,开关频率也会称为载波频率,一版各厂家运允许的载波频率的范围是1KHZ~16KHz,那37KW以下功率的变频器,基本上出厂默认的载波频率是4KHz左右,当功率很大的时候,载波频率一版会默认1~2KHz。

至于100Hz,这很像是对于输入交流电进行变频变压后输出电压信号的频率,可以设置的一个频率数值。

IGBT的开关频率(载波频率)与逆变器输出的电压信号的频率,这两个不要搞混了哈。

逆变器主频是什么意思?

逆变器主频是指逆变器输出交流电的频率。以下是关于逆变器主频的详细解释:

定义与单位:逆变器主频通常以赫兹为单位,表示逆变器每秒钟输出的交流电周期数。常见的逆变器主频为50Hz或60Hz。

影响因素:逆变器主频的选择取决于使用者需要的交流电频率以及所用设备对频率的要求。同时,逆变器内部电路的设计、工作环境中的温度和湿度等因素也会影响主频的选择和稳定性。

重要性:逆变器主频对输出电压和电流的稳定性有重要影响。如果逆变器输出的交流电频率低于设备需要的频率,可能会导致设备运行不稳定,甚至损坏设备。

应用领域:逆变器主频广泛应用于变频器、UPS电源、电机驱动器等领域。在太阳能电池板光伏系统中,逆变器主频是将阳光转化为电能的关键部分,将太阳能光伏板产生的直流电转换为可供家用和工业用电的交流电。

综上所述,逆变器主频是现代电子技术中的重要参数,对逆变器的性能和稳定性具有重要影响。

无刷电机控制(九)SVPWM之三相逆变器

SVPWM之三相逆变器

三相逆变器在无刷电机控制系统中扮演着至关重要的角色,它负责将直流电转换为交流电,以驱动无刷电机的三相线圈。以下是对三相逆变器及其在无刷电机控制中的应用的详细解析。

一、三相电压型逆变器结构

三相电压型逆变器的基本结构如图1所示。该逆变器由六个功率开关管(VT1-VT6)组成,这些开关管通常由IGBT(绝缘栅双极型晶体管)或MOSFET(金属氧化物半导体场效应晶体管)等器件实现。这些开关管通过六路PWM(脉冲宽度调制)信号进行控制,以实现逆变器的正常工作。

在逆变器中,VT1和VT4、VT2和VT5、VT3和VT6分别组成三组桥臂。当某一桥臂的上方开关管(如VT1)导通时,下方开关管(如VT4)关断;反之亦然。通过控制这六个开关管的导通和关断,逆变器可以输出三相电压ua、ub和uc。在FOC(磁场定向控制)算法的控制下,这三相电压呈现为正弦波的形式,从而实现从直流到交流的变换。

二、三相逆变器的工作原理

三相逆变器的工作原理基于PWM调制技术。通过调整PWM信号的占空比,可以控制逆变器输出电压的幅值和相位。在SVPWM(空间矢量脉宽调制)算法中,将逆变器的输出电压看作一个空间矢量,通过控制该矢量的方向和大小,可以实现对无刷电机定子磁链的精确控制。

具体来说,SVPWM算法将逆变器的输出电压空间划分为六个扇区,每个扇区对应一个特定的开关状态组合。在每个扇区内,通过调整两个相邻开关状态的作用时间,可以合成出所需的输出电压矢量。这种调制方式不仅提高了电压利用率,还降低了谐波含量,从而提高了无刷电机的运行性能。

三、三相逆变器的硬件实现

三相逆变器的硬件实现通常包括光耦芯片、驱动芯片、升压电路和大功率NMOS管等组件。这些组件共同构成了逆变器的核心电路,实现了对功率开关管的精确控制。

光耦芯片:用于隔离控制信号和功率电路,防止高压电路对控制电路的干扰。驱动芯片:用于放大控制信号,以驱动大功率NMOS管的导通和关断。升压电路:用于提高直流母线电压,以满足无刷电机对高压输入的需求。大功率NMOS管:作为逆变器的功率开关管,承受高压和大电流,实现直流到交流的变换。

以正点原子ATK-PD6010B无刷驱动板为例,其硬件结构如图2所示。该驱动板采用了上述组件,实现了对三相逆变器的精确控制。通过调整PWM信号的占空比和频率,可以实现对无刷电机转速和转矩的精确调节。

四、总结

三相逆变器是无刷电机控制系统中的关键组件之一。它通过PWM调制技术将直流电转换为交流电,以驱动无刷电机的三相线圈。在SVPWM算法的控制下,逆变器可以实现对无刷电机定子磁链的精确控制,从而提高电机的运行性能。硬件实现方面,三相逆变器通常由光耦芯片、驱动芯片、升压电路和大功率NMOS管等组件构成,这些组件共同实现了对功率开关管的精确控制。通过对这些组件的合理设计和优化,可以进一步提高无刷电机控制系统的性能和可靠性。

新能源逆变器包括哪些?

1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为 50~60Hz的逆变器;中频逆变器的频率一般为 400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。

2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。

3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。

4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。

5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。

6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。

7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。

8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。

9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。

10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。

逆变器LCL参数设计(单相/三相)

逆变器LCL参数设计(单相/三相)

逆变器LCL参数设计是确保逆变器高效、稳定运行的关键环节。以下将分别针对单相和三相逆变器,详细阐述LCL滤波器的参数设计步骤。

一、单相逆变器LCL参数设计1. 确定滤波器设计的必要性

并网型逆变器作为电流源逆变器,其输出电压中含有丰富的高频开关谐波。为了抑制并网电流谐波,需要加入高频滤波器。LCL滤波器相比L滤波器具有更好的滤波效果,因此被广泛应用于逆变器和电网之间。

2. 滤波器设计需要的参数逆变器直流侧电压额定功率电网电压及频率载波频率(调制方式基于载波调制)3. 滤波器设计的原则降低逆变器一侧的电流纹波限制滤波电容的无功功率抑制并网电流单次谐波降低LCL滤波器的谐振点4. LCL滤波器设计步骤

(1)确定总电感L1+L2的约束

根据基波电流的角度,确定滤波总电感的范围。简化计算时,最大电感量可按基波电压的5%~10%确定。

(2)确定逆变器桥臂侧电感L1

方法1:根据L的上下范围直接取逆变器桥臂侧电感。

方法2:通过分析一个载波周期内电流的最大变化量,对逆变器桥臂侧的电感设计进行限制。具体可通过限制周期(50Hz)电感电流纹波的最大值,得到高频电感感量的下限。

方法3:逆变电感上的电流纹波最大值控制在20%~30%基波电流有效值。根据此条件,结合相关公式推导,可得到桥臂L1的最小值。

(3)电容C的计算

主要考虑滤波电容C引入的无功功率,理论上为逆变器单相额定有功的5%左右,但实际工程上可取大一点,到10%~20%。根据此范围,结合相关公式,可计算出电容C的具体值。

(4)网侧电感L2的计算

方法1:根据并网电流单次谐波的限制,可以得到网侧电感电流的下限制,从而确定L2的取值范围。

方法2:通过相关公式推导,结合逆变器参数和电网要求,可得到L2的具体值。

方法3:采用经验公式进行计算,得到L2的近似值。

(5)阻尼电阻R的选择

方法1:根据经验公式,在电容一侧串入一个电阻,其值为容抗的2%。

方法2:通过相关公式推导,结合滤波器参数和电网要求,可得到阻尼电阻R的具体值。

二、三相逆变器LCL参数设计

三相逆变器LCL参数设计的基本步骤与单相逆变器类似,但需注意以下几点:

三相平衡:确保三相逆变器输出电流和电压平衡,以避免对电网造成不良影响。参数调整:由于三相逆变器结构更为复杂,因此在设计LCL滤波器参数时,需要更精细地调整电感、电容和阻尼电阻的值,以满足三相系统的要求。谐波抑制:三相逆变器在运行时可能产生更多的谐波分量,因此需要更加关注滤波器的谐波抑制能力。

在具体设计时,可参考单相逆变器LCL参数设计的方法和步骤,结合三相系统的特点进行适当调整。

三、总结

逆变器LCL参数设计是一个复杂而关键的过程,需要综合考虑逆变器参数、电网要求以及滤波器性能等多个因素。通过精确计算和合理设计,可以确保逆变器高效、稳定地运行,并为电网提供高质量的电能。

以上内容仅供参考,具体设计时还需结合实际情况进行适当调整。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言