发布时间:2025-08-16 22:41:04 人气:
光伏逆变器集中式和组串式的区别
光伏逆变器集中式和组串式的主要区别如下:
输出电压等级:
集中式逆变器:交流输出电压一般为315V左右。这种较低的电压需要经过升压后才能并网发电。组串式逆变器:交流输出一般为380/400V左右,同样也需要升压后才能并网。但相较于集中式逆变器,其输出电压稍高一些。并网方式与电网稳定性:
集中式逆变器:由于输出电压较低,如果直接并网,会导致并网点特别多,这不利于电能计量和电网的稳定。因此,集中式逆变器通常需要经过多级升压后才能并网。组串式逆变器:同样存在低压直接并网导致的问题,也需要进行升压处理。但在某些小型项目中,组串式逆变器可能更灵活,能够适应不同的并网需求。电流与开关设备适应性:
集中式逆变器:对于大型MW级的太阳能项目,如果采用低压并网,电流会特别大,这不利于选择轻型的开关设备。因此,集中式逆变器更适合大型项目,并通过升压来降低电流。组串式逆变器:虽然组串式逆变器在小型项目中可能更灵活,但在大型项目中同样需要考虑电流和开关设备的适应性。不过,由于其输出电压稍高,可能在某些情况下对开关设备的要求稍低一些。系统设计与成本考虑:
在大型光伏发电系统中,为了降低电流、减小导线截面和考虑设备选型与成本,通常会选择中压集电线路进行升压并网。这一过程中,集中式逆变器和组串式逆变器都需要与中压集电线路相匹配。但具体选择哪种逆变器以及升压到哪个电压等级,需要综合考虑项目规模、设备成本、电缆与开关设备采购成本、运输与储存成本等多方面因素。综上所述,集中式逆变器和组串式逆变器在输出电压等级、并网方式与电网稳定性、电流与开关设备适应性以及系统设计与成本考虑等方面存在显著差异。在实际应用中,需要根据具体项目的需求和条件来选择合适的逆变器类型及升压方案。
光伏逆变器分类及实物拆解
光伏逆变器分类及实物拆解
逆变器是将直流电(如电池、光伏发的电)转变成交流电(一般为220V,50Hz正弦波)的转换器,是光伏发电以及储能的重要组件。
一、逆变器分类
逆变器依据技术不同,主要分为集中式逆变器、组串式逆变器和微型逆变器,目前以集中式和组串式为主,微型逆变器发展迅猛。
集中式逆变器
特点:多个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT模块,功率较小的采用MOS管,同时通过DSP转换控制器来改善电能的质量,使它接近于正弦波电流。
应用:主要用在大于10KW的集中式光伏发电站,如荒漠、山区等偏远地区的大型光伏电站。集中式逆变器先汇总光伏产生的直流电,然后再转变为交流电,功率相对较大,一般在MW级别。
示意图:
组串式逆变器
特点:将组件产生的直流电直接转变为交流电再进行汇总,功率相对较小。组串式逆变器采用模块化设计,每个光伏阵列与一个逆变器相对应,直流端具有最大功率追踪功能,交流端并联并网。其优点是不受组串模块差异和阴影遮挡的影响,同时减少光伏组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。
应用:2020年以来,全球主流逆变器厂商相继发布大电流组串式逆变器,应用于地面电站的组串式逆变器的功率以320KW为主,MPPT电流升级至40A以上,支持单串电流20A以上。
示意图:
微型逆变器
特点:光伏发电系统中的功率小于等于1000瓦、具组件级MPPT的逆变器。功能与组串式逆变器一样,但体积小,可直接安装到太阳能光伏板下面。每个太阳能电池板直接跟一个微型逆变器连接,采用并联的方式。微型逆变器可以设置成一拖一(每个微逆连接一片光伏组件)、一拖二、一拖三、一拖四等,根据微电网模型的不同进行设计。
应用:单相微逆适用于居民小区和小型商业;三相微逆在性能和稳定、效率上比单相要高一些,适用于工商业。
优势:安装更简单,能单独监控和优化每个太阳能板,达到最高的太阳能使用效率。
示意图:
二、逆变器实物拆解
光伏逆变器主要由输入滤波电路、DC/DC MPPT电路、DC/AC逆变电路、输出滤波电路、核心控制单元电路组成。逆变器主要由电子元器件(功率半导体、集成电路、电感磁性元器件、PCB线路板、电容、电感、开关器件、连接器等)、结构件(散热器、压铸件、机柜机箱、钣金件等)和辅助材料(胶水、包材、塑胶件等绝缘材料)组成。
以下是对阳光电源逆变器及禾迈微型逆变器的实物拆解展示:
阳光电源逆变器实物拆解:
禾迈微型逆变器实物拆解:
通过实物拆解,可以更直观地了解逆变器的内部结构、元器件布局以及工作原理,有助于深入理解逆变器的技术特性和性能表现。
光伏逆变器、储能逆变器、储能变流器、PCS傻傻分不清楚,带你一文清楚
光伏逆变器、储能逆变器、储能变流器、PCS的区别与联系
一、定义与功能
光伏逆变器
定义:光伏逆变器是将光伏设备(如太阳能电池板)产生的直流电(DC)转换为交流电(AC)的设备。
功能:主要作用是通过光伏设备将太阳能转变的直流电逆变为交流电,可供负载使用、并入电网或存储起来。
储能逆变器
定义:储能逆变器通常指用于储能系统中的逆变器,它能够实现直流电与交流电之间的双向转换。
功能:在充电过程中,将交流电转换为直流电存储到蓄电池中;在放电过程中,将蓄电池中的直流电转换为交流电供负载使用或并入电网。
储能变流器(PCS)
定义:储能变流器(Power Conversion System,简称PCS)是储能系统中的核心设备,用于控制蓄电池的充电和放电过程,进行交直流电的转换。
功能:由DC/AC双向变流器、控制单元等构成,能够精确控制蓄电池的充放电,实现交流电与直流电之间的高效转换。
二、分类与应用
光伏逆变器
分类:集中式逆变器、组串式逆变器、微型逆变器。
集中式逆变器:适用于大型地面电站、分布式工商业光伏,一般输出功率大于250KW。
组串式逆变器:适用于大型地面电站、分布式工商业光伏(一般输出功率小于250KW,三相)、户用光伏(一般输出功率小于等于10KW,单相)。
微型逆变器:适用于分布式光伏(一般输出功率小于等于5KW,三相)、户用光伏(一般输出功率小于等于2KW,单相)。
应用:主要用于将光伏系统产生的直流电转换为交流电,供负载使用或并入电网。
储能逆变器
分类:通常根据应用场景和功率大小进行分类,如大储、工商业储、户储等。
应用:在储能系统中,储能逆变器负责将交流电转换为直流电进行充电,以及将直流电转换为交流电进行放电。
储能变流器(PCS)
分类:传统储能变流器、Hybrid储能变流器、一体机。
传统储能变流器:主要使用交流耦合方案,应用场景主要是大储。
Hybrid储能变流器:主要采用直流耦合方案,应用场景主要是户储。
一体机:储能变流器与电池组的集成产品,便于安装和维护。
应用:储能变流器广泛应用于各种储能系统,如地面电站、独立储能电站、工商业储能、户用储能等。
三、联系与区别
联系
功能相似:光伏逆变器、储能逆变器、储能变流器(PCS)都涉及直流电与交流电之间的转换。
应用场景重叠:在某些应用场景下,如户用光伏和户用储能,这些设备可能同时存在并协同工作。
区别
主要功能:光伏逆变器主要用于将光伏系统产生的直流电转换为交流电;储能逆变器则实现交流电与直流电之间的双向转换;储能变流器(PCS)则更侧重于控制蓄电池的充放电过程,实现高效、精确的交直流电转换。
应用场景:光伏逆变器主要应用于光伏系统;储能逆变器主要应用于储能系统;储能变流器(PCS)则广泛应用于各种储能系统,包括地面电站、独立储能电站、工商业储能、户用储能等。
分类与功率:三者根据应用场景和功率大小有不同的分类和功率范围。
综上所述,光伏逆变器、储能逆变器、储能变流器(PCS)在定义、功能、分类与应用等方面存在明显的区别与联系。了解这些区别与联系有助于更好地理解和应用这些设备,以满足不同场景下的需求。
古瑞瓦特集中式逆变器怎样?
古瑞瓦特集中式逆变器的工作原理是将光伏组件产生的直流电汇总并转换为交流电,随后进行升压并网。因此,这类逆变器通常拥有较大的功率输出。在光伏电站的应用中,通常会采用500kW以上的集中式逆变器。
古瑞瓦特集中式逆变器具有以下特点:首先,逆变器的功率较大,但数量较少,便于管理和维护。由于元器件较少,其稳定性较好,维护起来也更加便捷。其次,逆变器的谐波含量较低,因此电能质量较高。保护功能齐全,保证了其安全性。最后,该逆变器具备功率因素调节和低电压穿越功能,能够更好地适应电网环境。
在实际应用中,古瑞瓦特集中式逆变器能够显著提高光伏电站的运行效率,降低运维成本。其优越的性能不仅体现在转换效率上,更在于其稳定性和可靠性。尤其是在大规模光伏电站项目中,古瑞瓦特集中式逆变器的优势更为明显,能够有效保障项目的长期稳定运行。
总之,古瑞瓦特集中式逆变器以其大功率、少数量、高稳定性、良好电能质量、全面保护功能、功率因素调节和低电压穿越功能等特性,在光伏电站建设中得到了广泛的应用和认可。这些特点使得古瑞瓦特集中式逆变器成为了光伏电站的理想选择。
什么是集中式逆变器
集中式逆变器是一种电力电子设备,主要用于将直流电转换为交流电,以便在电力系统中进行传输和分配。它主要应用于光伏发电系统中,是整个系统中的重要组成部分。下面将对集中式逆变器进行详细解释。
集中式逆变器的主要功能是将太阳能电池板产生的直流电转换为符合电网要求的交流电。它接收来自多个太阳能电池板的直流电输入,通过内部电路转换,将直流电集中转换成交流电。这个过程主要涉及三个关键步骤:
一、直流电输入。在光伏发电系统中,太阳能电池板将光能转换为直流电,这些直流电通过电缆接入逆变器。
二、转换过程。逆变器内部包含转换电路,这些电路能够将输入的直流电转换为交流电。这个转换过程涉及复杂的电子技术和控制策略,以确保转换效率最大化并满足电网要求。
三、交流电输出。转换后的交流电将通过逆变器输出端口,连接到电网或电力分配系统,以供用户使用或进一步传输。
集中式逆变器的特点在于其高效率和可靠性。由于其集中处理多个太阳能电池板的直流电输入,因此能够在较大的功率范围内实现高效的电力转换。此外,现代集中式逆变器还具备智能监控和控制功能,能够实时监控系统的运行状态并进行调整,以确保系统的稳定运行和最佳性能。总的来说,集中式逆变器在光伏发电系统中发挥着核心作用,确保了系统的稳定运行和高效电力转换。
光伏逆变器主要功能和分类
光伏逆变器主要功能和分类
主要功能:
直流转交流功能:
光伏逆变器是逆变装置的核心,其核心部件是逆变开关电路。逆变器通过电力电子开关的导通与关断,将光伏组件产生的直流电转换为交流电,以供家庭、企业或电网使用。
自动运行和停机功能:
逆变器具有智能控制功能,能够根据光伏阵列的输出功率自动运行和停机。当太阳辐射强度增强,光伏阵列输出功率达到逆变器工作所需的最小值时,逆变器自动开始运行;而当太阳辐射减弱,光伏阵列输出功率减小至接近0时,逆变器则自动进入待机状态。
防孤岛效应功能:
逆变器内置防孤岛保护电路,能够实时侦测电网的电压、频率等信息,并与预置值进行比较。当电网出现异常停电时,逆变器能够迅速断开与电网的连接,防止孤岛效应的发生,确保电网和光伏系统的安全。
最大功率点跟踪控制功能(MPPT):
MPPT技术是逆变器的核心关键技术之一。逆变器能够实时追踪光伏组件的最大输出功率点,通过智能调节工作点电压或电流,使光伏系统始终运行在最大功率点附近,从而最大化提升发电量。
智能组串监测:
逆变器在原有MPPT监测的基础上,实现了智能的组串逐串监测。这种监测方式能够精确到每一个支路组串的电压和电流,用户可以清晰地查看每一路组串的实时运行数据,便于及时发现和处理问题。
智能I-V曲线扫描诊断:
逆变器具备智能I-V曲线扫描诊断功能,能够实时监测光伏组件的I/V曲线。当组件发生阴影遮挡、损坏或接触不良等情况时,I-V曲线会发生明显变化,逆变器能够及时发现并报警,提醒用户进行维护。
智能防PID效应:
PID效应是光伏组件在长时间工作后性能逐渐衰减的一种情况。逆变器通过智能风冷和温度监测等技术手段,有效防止PID效应的发生,延长光伏组件的使用寿命。
智能恢复并网功能:
逆变器具备智能恢复并网功能,能够在检测到各项运行条件正常后自动恢复并网输出,无需人工重新调试或重启。
智能无功补偿:
逆变器在发电过程中能够智能地进行无功补偿,确保功率因数达标,避免电网公司惩罚性的收取力调电费。
分类:
光伏逆变器根据不同的分类标准可以分为多种类型:
按输出波形分类:
方波逆变器:输出波形为方波,适用于阻性负载。
正弦波逆变器:输出波形为正弦波,与市电波形相同,适用于各种负载。
按功率大小分类:
小功率逆变器:功率在几百瓦至几千瓦之间,适用于家庭或小型光伏系统。
大功率逆变器:功率在几十千瓦至几百千瓦之间,适用于大型光伏电站或工业应用。
按应用场景分类:
离网逆变器:用于离网光伏系统,为无电网覆盖地区提供电力。
并网逆变器:用于并网光伏系统,将产生的电力送入电网。
按技术类型分类:
集中式逆变器:功率较大,通常用于大型光伏电站,将多个光伏组件产生的直流电集中转换为交流电。
组串式逆变器:功率较小,每个逆变器对应一个光伏组串,能够实现更精细的MPPT控制和组串监测。
综上所述,光伏逆变器作为光伏发电系统中的重要组成部分,具有多种功能和分类方式。用户在选择逆变器时,应根据具体的应用场景和需求进行综合考虑。
什么是集中式光伏
集中式光伏是一种大规模的光伏发电方式。
主要特点包括: 大规模部署:集中式光伏电站利用大面积的空地和太阳能电池组件,集中安装光伏电池板。 转换与接入电网:通过集中逆变器将产生的直流电转换为交流电,并接入电网,实现电能的生成和供应。
建设选址: 依托光照资源丰富地区:主要依托沙漠、高原等空旷地带进行建设,这些地区日照时间长,光照强度大,为光伏电池板提供了理想的运行环境。
优势: 运行稳定:由于规模较大,集中式光伏电站通常采用集中的管理和运营方式,运行稳定。 维护成本低:相比分布式光伏,集中式光伏电站的维护成本相对较低。 能源可持续利用:有助于实现能源的可持续利用,促进能源结构转型,提高可再生能源比重。 环境保护:作为一种清洁能源,集中式光伏在发电过程中不产生污染物,对环境保护具有积极作用。
发展趋势: 技术升级:随着技术和材料的不断改进和升级,集中式光伏电站的效率也在不断提高。 作用日益显现:集中式光伏在促进能源结构转型、提高可再生能源比重等方面的作用日益显现,成为现代新能源领域的重要组成部分,为实现能源的可持续发展提供了有效路径。
组串式逆变器和集中式逆变器的区别
组串式逆变器和集中式逆变器的区别
组串式逆变器和集中式逆变器是光伏电站中两种常见的逆变器配置方案,它们在结构、工作原理、应用场景以及性能特点等方面存在显著差异。
一、结构和工作原理
组串式逆变器:基于智能模块化的概念,将光伏方阵中的每个光伏组串连接至一台指定的逆变器直流输入端。多个光伏组串和逆变器模块化的组合在一起,所有逆变器在交流输出端并联,完成将直流电转换为交流电的过程。
集中式逆变器:多路并行的光伏组串经过汇流后连接到逆变器直流输入端,集中完成将直流电转换为交流电。其系统集成度高,功率密度大。
二、应用场景
组串式逆变器:由于其不受组串间光伏电池组件性能差异和局部遮影的影响,可以处理不同朝向和不同型号的光伏组件,因此适用于各种复杂地形和光照条件的光伏电站,包括地面光伏电站、屋顶光伏电站等。同时,其结构简单,安装简便,设备小、占地少,配置灵活,也使其在各种规模的光伏电站中得到广泛应用。
集中式逆变器:由于其系统集成度高、成本低、谐波含量少等特点,更适用于地形平坦、规模较大的地面光伏电站。然而,对于复杂地形或光照条件不均的光伏电站,集中式逆变器可能无法充分发挥其性能优势。
三、性能特点
组串式逆变器:
发电效率高:通过多路MPPT的功率跟踪,可以最大限度地减少阵列失配损失,提高发电效率。
可靠性高:具有强大的保护功能,能规避某一串直流短路能量倒灌的问题,没有集中式逆变器难以解决的直流故障问题。
安全性高:设备小、占地少,安装简便,降低了运维难度和风险。
易安装维护:模块化设计使得安装和维护更加便捷。
集中式逆变器:
成本低:由于系统集成度高,可以降低设备成本和安装成本。
电能质量高:谐波含量少,直流分量少,电能质量高。
但存在局限性:受不同光伏组串输出电压、电流不完全匹配的影响,逆变过程的效率可能会降低,电性能也可能下降。同时,整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。
四、展示
以下是组串式逆变器和集中式逆变器的示意图,以便更直观地了解它们的结构差异:
综上所述,组串式逆变器和集中式逆变器在结构、工作原理、应用场景以及性能特点等方面存在显著差异。在选择逆变器配置方案时,需要根据光伏电站的具体情况和需求进行综合考虑,以确保光伏电站的高效、可靠运行。
光伏发电站的逆变器怎么设置
太阳能光伏发电并网系统中的并网逆变器设置方式分为:集中式、主从式、分布式和组串式。
1、集中式
集中式并网方式适合于安装朝向相同且规格相同的太阳能电池方阵,在电气设计时,采用单台逆变器实现集中并网发电方案如图1所示。
对于大型并网光伏系统,如果太阳能电池方阵安装的朝向、倾角和阴影等情况基本相同,通常采用大型的集中式三相逆变器。
该方式的主要优点是:整体结构中使用光伏并网逆变器较少,安装施工较简单;使用的集中式逆变器功率大,效率较高,通常大型集中式逆变器的效率比分布式逆变器要高大约2%左右,对于9.3MWp光伏发达系统而言,因为使用的逆变器台数较少,初始成本比较低;并网接入点较少,输出电能质量较高。该方式的主要缺点是一旦并网逆变器故障,将造成大面积的太阳能光伏发电系统停用。
集中逆变一般用于大型光伏发电站(>10kW)的系统中,很多并行的光伏电池组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP来改善所产出电能的质量,使它非常接近于正弦波电流。
最大特点是系统的功率高,成本低。但受光伏电池组串匹配和部分遮影的影响,导致整个光伏系统的效率不高。同时整个光伏系统的发电可靠性受某一光伏电池单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏电池阵列的接口箱,对每一串的光伏电池组串进行监控,如其中有一组光伏电池组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串光伏电池停止工作,从而不会因为一串光伏电池串的故障而降低和影响整个光伏系统的工作和能量产出。
2、主从式
对于大型的光伏发电系统可采用主从结构,主从结构其实也是集中式的一种,该结构的主要特点是采用2~3个集中式逆变器,总功率被几个逆变器均分。在辐射较低的时候,只有一个逆变器工作,以提高逆变器在太阳能电池方阵输出低功率时候的工作效率;在太阳辐射升高,太阳能电池方阵输出功率增加到超过一台逆变器的容量时,另一台逆变器自动投入运行。
为了保证逆变器的运行时间均等,主从逆变器可以自动的轮换主从的配置。主从式并网发电原理如图2所示。主从结构的初始成本会比较高,但可提高光伏发电系统逆变器运行时的效率,对于大型的光伏系统,效率的提高能够产生较大的经济效益。
3、分布式
分布式并网发电方式适合于在安装不同朝向或不同规格的太阳能电池方阵,在电气设计时,可将同一朝向且规格相同的太阳能电池方阵通过单台逆变器集中并网发电,大型的分布式系统主要是针对太阳能电池方阵朝向、倾角和太阳阴影不尽相同的情况使用的。
分布式系统将相同朝向,倾角以及无阴影的光伏电池组件串成一串,由一串或者几串构成一个太阳能电池子方阵,安装一台并网逆变器与之匹配。分布式并网发电原理如图3所示。这种情况下可以省略汇线盒,降低成本;还可以对并网光伏发电系统进行分片的维修,减少维修时的发电损失。
分布式并网发电的主要缺点是:对于大中型的上百千瓦甚至兆瓦级的光伏发电系统,需要使用多台并网逆变器,初始的逆变器成本可能会比较高;因为使用的逆变器台数较多,逆变器的交流侧和公用电网的接入点也较多,需要在光伏发电系统的交流侧将逆变器的输出并行连接,对电网质量有一定影响。
4、组串式
光伏并网组串逆变器是将每个光伏电池组件与一个逆变器相连,同时每个光伏电池组件有一个单独的最大功率峰值跟踪,这样光伏电池组件与逆变器的配合更好。组串逆变器已成为现在国际市场上最流行的逆变器,组串逆变器是基于模块化概念基础上的,每个光伏组串(1kW~5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。许多大型光伏阀电厂使用组串逆变器,优点是不受光伏电池组串间差异和遮影的影响。
在组串间引入“主-从”概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏电池组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。
多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。在多组串逆变器中,包含了不同的单独功率峰值跟踪DC/DC变换器,DC/DC变换器的输出通过一个普通的逆变器转换成交流电与电网并联。由于是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。
另需要解决的是怎样更有效的与电网并网,简单的办法是直接通过普通的交流开关进行并网,这样就可以减少成本和设备的安装,但往往各地的电网的安全标准也许不允许这样做。另一和安全有关的因素是是否需要使用隔离变压器(高频或低频),或允许使用无变压器式的逆变器。
光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467