发布时间:2025-08-01 04:10:58 人气:
光伏电站如何匹配逆变器才正确?
1. 在选择光伏电站的逆变器时,正确匹配是关键。电站设计容量为A(MW)时,可通过计算电池板扩容到B(MW)时的投资性价比来确定最佳容配比,即K=B/A。
2. 当逆变器负载超过其标称功率的100%、105%、110%时,最优容量配比分别为1.05、1.1、1.15。在电站设计时,应考虑这一最佳容配比。
3. 光伏电站的最优容量配置比还受到多种因素的影响,包括太阳能光照资源、电站效率、逆变器发电能力、电站综合单价和光伏组件单价等。
4. 用户和系统安装商在安装光伏电站时,如果能够考虑到这一容配比,将显著提高发电量。
5. 国家发展和改革委员会能源研究所研究员王斯成呼吁对“光伏-逆变器容配比”进行调整。
6. 根据《GB50797-2012:光伏发电站设计规范》,逆变器的配置容量应与光伏方阵的安装容量相匹配,确保逆变器允许的最大直流输入功率不小于光伏方阵的实际最大直流输出功率。
7. 在国际上,光伏发电系统的交流容量通常定义为光伏系统额定输出或合同约定的最大功率,单位为MW。
8. 国内标准在光伏电站的功率比方面还处于发展阶段。光伏电站通常设计成高光伏-逆变器功率比以降低度电成本。
9. 适度提高光伏-逆变器容配比是光伏系统设计的重要技术创新,自2012年以来被光伏界普遍接受。例如,美国FirstSolar的光电站容配比通常选在1.4:1.0。
10. 基于平均神改化度电成本最低的原则,最优的光伏-逆变器容配比均大于1:1。因此,适当提升光伏组件容量(也称组件超配)有助于提升系统整体效益。
11. 目前,许多电站采用组件超配的方法来提高逆变器的运行效率和电站收益。
低电压穿越标准(光伏、风电、储能)
深入解析:光伏、风电与储能设备的低电压穿越标准
在电力系统中,低电压穿越(Low Voltage Ride Through, LVRT)是一种至关重要的技术,尤其对于光伏、风电和储能设备。这项技术确保了这些设备在电网电压突然下降时仍能保持稳定运行,避免大规模脱网导致电网稳定性受损。
1. 光伏并网逆变器的LVRT标准
光伏并网逆变器的低电压穿越能力由NB/T 32004-2018标准详细规定。大型电站逆变器需能耐受异常电压,确保在35kV及以上电网中保持并网,防止电压异常时脱网。当电网电压跌至0时,逆变器需在0.15秒内保持并网,并在0.625秒后恢复至90%标称电压。同时,故障清除后,逆变器需快速恢复有功功率,以10%额定功率/秒的速率恢复至正常值。此外,逆变器还需在电压跌落期间提供动态无功支撑。
2. 风力发电的电压穿越要求
风力发电机组则遵循GB/T 36995-2018标准,需在特定电压范围内保持连续运行。对于低电压穿越,风电机组在电压跌落期间需以10%Pn/s的功率变化率恢复输出,并在75ms内注入容性无功电流。高电压穿越时,风电机组需在电压升高时快速响应,注入感性无功电流,响应时间分别限制在40ms和80ms。
3. 储能变流器的LVRT标准
电化学储能系统的储能变流器,如GB/T 34120-2017所述,当电网电压跌落,储能变流器需保证在0.15秒内不脱网。电压低于特定曲线1时允许脱离。故障后,储能变流器的有功功率需以至少30%额定功率/秒恢复。在短路故障时,储能变流器还需提供动态无功支撑,响应时间不超过30ms,并实时跟踪电压变化以确保电网稳定性。
这些标准为保证可再生能源并网稳定性和电力系统安全运行提供了坚实的基础,确保了在电压波动时,设备能有效应对,为电网的可靠运行提供强大保障。
光伏知识必备│光伏逆变器的电路结构、原理及故障处理
逆变器是光伏系统中的核心部件,负责将光伏板产生的直流电转换为交流电以供电网使用或直接接入负载。其电路结构主要包括输入电路、输出电路、主逆变开关电路、控制电路、辅助电路、保护电路等关键部分。
输入电路提供给逆变器稳定的直流工作电压,确保逆变电路的正常运行。
主逆变电路是逆变器的中心,通过电力电子开关的导通与关断,实现直流电到交流电的转换。根据隔离方式的不同,主逆变电路分为隔离式和非隔离式两种。
输出电路则对主逆变电路输出的交流电进行修正、补偿和调理,以达到符合电网标准的高质量交流电。
控制电路产生一系列控制脉冲,控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。
辅助电路将输入电压转换为适合控制电路工作的直流电压,内部包含各种检测电路,确保逆变器稳定运行。
保护电路则针对逆变器的运行安全进行监控,包括输入过欠压保护、输出过欠压保护、过流保护、短路保护、孤岛保护等,确保逆变器在异常情况下的安全。
逆变器将直流电转换为交流电的过程可以通过半导体功率开关器件在控制电路的作用下以极快的速度进行,实现直流电切断,转换为交流电。
三相并网型逆变器电路原理主要由主电路和微处理器电路两部分组成。主电路负责DC-DC-AC变换和逆变过程,微处理器电路则完成系统并网的控制过程,确保逆变器输出的交流电压值、波形、相位等维持在规定的范围内。
在华为逆变器的常见故障处理方面,针对绝缘阻抗低、母线电压低、漏电流故障、直流过压保护、逆变器开机无响应、电网故障等问题,采用排除法逐步检测,找出问题所在并进行针对性处理。例如,针对绝缘阻抗低的问题,可通过检测直流接头是否有水浸短接支架或者烧熔短接支架,以及检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。针对电网故障,需提前勘察电网健康情况,与逆变器厂商沟通,确保项目设计在合理范围内,避免出现电压过高或过低,过/欠频等问题,通过正确选择并网并严抓电站建设质量,以解决电网相关问题。
大型光伏电站每组出线进逆变器怎么接
通常情况下,大型光伏电站的组串汇流后,会依次通过汇流箱、直流配电柜、逆变器和交流配电柜。比如一个500千瓦的电站,可以被划分为两个250千瓦的子电站,每个子电站配备一台250千瓦的逆变器。交流配电柜则需要配置为500千瓦,以匹配整个电站的输出。
在组件选择上,我们采用了250瓦的组件,因此250千瓦的子电站需要1000块这样的组件。每块250瓦的组件在正常工作电压下约为30伏,串联25块组件,总电压达到750伏,这在逆变器的最大跟踪功率点(Maximum Power Point Tracking, MTTP)范围内是合适的。
对于1000块组件,总共可以串联40串,我们选择10进一出的汇流箱进行组串汇流,这样需要4个这样的汇流箱。随后,这些汇流后的直流电将通过直流配电柜,进入逆变器进行转换,最终输出交流电,接入交流配电柜。
在这个过程中,每一步的选择和配置都是至关重要的,需要综合考虑系统电压、组件数量、汇流箱容量以及逆变器和配电柜的匹配等因素,确保整个电站的高效运行。
光伏发电站的逆变器怎么设置
太阳能光伏发电并网系统中的并网逆变器设置方式分为:集中式、主从式、分布式和组串式。
1、集中式
集中式并网方式适合于安装朝向相同且规格相同的太阳能电池方阵,在电气设计时,采用单台逆变器实现集中并网发电方案如图1所示。
对于大型并网光伏系统,如果太阳能电池方阵安装的朝向、倾角和阴影等情况基本相同,通常采用大型的集中式三相逆变器。
该方式的主要优点是:整体结构中使用光伏并网逆变器较少,安装施工较简单;使用的集中式逆变器功率大,效率较高,通常大型集中式逆变器的效率比分布式逆变器要高大约2%左右,对于9.3MWp光伏发达系统而言,因为使用的逆变器台数较少,初始成本比较低;并网接入点较少,输出电能质量较高。该方式的主要缺点是一旦并网逆变器故障,将造成大面积的太阳能光伏发电系统停用。
集中逆变一般用于大型光伏发电站(>10kW)的系统中,很多并行的光伏电池组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP来改善所产出电能的质量,使它非常接近于正弦波电流。
最大特点是系统的功率高,成本低。但受光伏电池组串匹配和部分遮影的影响,导致整个光伏系统的效率不高。同时整个光伏系统的发电可靠性受某一光伏电池单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏电池阵列的接口箱,对每一串的光伏电池组串进行监控,如其中有一组光伏电池组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串光伏电池停止工作,从而不会因为一串光伏电池串的故障而降低和影响整个光伏系统的工作和能量产出。
2、主从式
对于大型的光伏发电系统可采用主从结构,主从结构其实也是集中式的一种,该结构的主要特点是采用2~3个集中式逆变器,总功率被几个逆变器均分。在辐射较低的时候,只有一个逆变器工作,以提高逆变器在太阳能电池方阵输出低功率时候的工作效率;在太阳辐射升高,太阳能电池方阵输出功率增加到超过一台逆变器的容量时,另一台逆变器自动投入运行。
为了保证逆变器的运行时间均等,主从逆变器可以自动的轮换主从的配置。主从式并网发电原理如图2所示。主从结构的初始成本会比较高,但可提高光伏发电系统逆变器运行时的效率,对于大型的光伏系统,效率的提高能够产生较大的经济效益。
3、分布式
分布式并网发电方式适合于在安装不同朝向或不同规格的太阳能电池方阵,在电气设计时,可将同一朝向且规格相同的太阳能电池方阵通过单台逆变器集中并网发电,大型的分布式系统主要是针对太阳能电池方阵朝向、倾角和太阳阴影不尽相同的情况使用的。
分布式系统将相同朝向,倾角以及无阴影的光伏电池组件串成一串,由一串或者几串构成一个太阳能电池子方阵,安装一台并网逆变器与之匹配。分布式并网发电原理如图3所示。这种情况下可以省略汇线盒,降低成本;还可以对并网光伏发电系统进行分片的维修,减少维修时的发电损失。
分布式并网发电的主要缺点是:对于大中型的上百千瓦甚至兆瓦级的光伏发电系统,需要使用多台并网逆变器,初始的逆变器成本可能会比较高;因为使用的逆变器台数较多,逆变器的交流侧和公用电网的接入点也较多,需要在光伏发电系统的交流侧将逆变器的输出并行连接,对电网质量有一定影响。
4、组串式
光伏并网组串逆变器是将每个光伏电池组件与一个逆变器相连,同时每个光伏电池组件有一个单独的最大功率峰值跟踪,这样光伏电池组件与逆变器的配合更好。组串逆变器已成为现在国际市场上最流行的逆变器,组串逆变器是基于模块化概念基础上的,每个光伏组串(1kW~5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。许多大型光伏阀电厂使用组串逆变器,优点是不受光伏电池组串间差异和遮影的影响。
在组串间引入“主-从”概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏电池组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。
多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。在多组串逆变器中,包含了不同的单独功率峰值跟踪DC/DC变换器,DC/DC变换器的输出通过一个普通的逆变器转换成交流电与电网并联。由于是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。
另需要解决的是怎样更有效的与电网并网,简单的办法是直接通过普通的交流开关进行并网,这样就可以减少成本和设备的安装,但往往各地的电网的安全标准也许不允许这样做。另一和安全有关的因素是是否需要使用隔离变压器(高频或低频),或允许使用无变压器式的逆变器。
光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。
分布式光伏电站建设国家标准
分布式光伏电站建设的国家标准包括多个方面,其中与施工、验收及逆变器技术等相关的标准主要有:光伏发电工程施工组织设计规范、电气装置安装工程盘、柜及二次回路接线施工及验收规范、电气装置安装工程接地装置施工及验收规范、并网光伏发电专用逆变器技术要求和试验方法、光伏发电站逆变器电能质量检测技术规程、光伏发电站并网验收规范等。
具体标准内容如下:
光伏发电工程施工组织设计规范:该规范旨在确保光伏发电工程的施工过程有序、高效,并符合安全、质量等方面的要求。
电气装置安装工程盘、柜及二次回路接线施工及验收规范:这一规范针对电气装置的安装工程,特别是盘、柜及二次回路接线的施工和验收,提供了详细的技术要求和标准。
电气装置安装工程接地装置施工及验收规范:该规范关注电气装置的接地装置施工和验收,确保接地系统的安全性和可靠性。
并网光伏发电专用逆变器技术要求和试验方法:此标准对并网光伏发电专用的逆变器提出了具体的技术要求和试验方法,以确保逆变器的性能和安全性。
光伏发电站逆变器电能质量检测技术规程:该规程规定了光伏发电站逆变器电能质量的检测技术和方法,有助于保障电网的稳定运行和电能质量。
光伏发电站并网验收规范:这一规范为光伏发电站的并网验收提供了明确的标准和流程,确保光伏发电站能够安全、可靠地并入电网。
此外,分布式光伏电站的建设还需遵循《分布式光伏发电开发建设管理办法》,该办法从政策层面为分布式光伏发电的发展提供了指导和支持。在实际操作中,建议查阅最新的官方文件或咨询专业人士,以确保分布式光伏电站的建设符合最新的国家标准和政策要求。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467