发布时间:2025-07-28 04:50:58 人气:
【逆变器】光伏逆变器MPPT的作用、原理以及算法
逆变器中光伏逆变器MPPT的作用、原理以及算法
一、MPPT的作用
MPPT(Maximum Power Point Tracking),即最大功率点跟踪,是逆变器中非常核心的技术。由于太阳能电池受到光强、温度以及环境等外界因素的影响,其输出功率是变化的。光强越强,太阳能电池发出的电就越多。带MPPT最大功率跟踪的光伏逆变器就是为了充分利用太阳能电池,使之运行在最大功率点。也就是说,在太阳辐射不变的情况下,有MPPT后的输出功率会比没有MPPT前的要高。MPPT能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最大功率输出。
二、MPPT的原理
MPPT的原理是基于电源输出最大功率的条件,即当负载电阻等于电源的内阻时,电源即有最大功率输出。虽然光伏电池和DC/DC转换电路都是强非线性的,然而在极短的时间内,可以认为是线性电路。因此,只要调节DC-DC转换电路的等效电阻使它始终等于光伏电池的内阻,就可以实现光伏电池的最大输出,也就实现了光伏电池的MPPT。
具体来说,光伏电池阵列与负载通过DC/DC电路连接,最大功率跟踪装置不断检测光伏阵列的电流电压变化,并根据其变化对DC/DC变换器的PWM驱动信号占空比进行调节。通过调节占空比,可以改变DC/DC转换电路的等效电阻,从而使其始终等于光伏电池的内阻,实现最大功率输出。
三、MPPT的算法
目前,光伏阵列的最大功率点跟踪(MPPT)技术已经发展出多种控制方法,常用的有以下几种:
恒电压跟踪法(CVT):CVT是一种简单有效的MPPT方法。它基于光伏电池在最大功率点附近的电压变化较小的特性,通过设定一个恒定的电压值作为参考电压,使光伏电池的输出电压始终跟踪这个参考电压,从而实现最大功率输出。然而,CVT方法受到温度和环境变化的影响,需要定期校准。
干扰观察法(P&O):P&O方法通过周期性地改变光伏电池的输出电压或电流,并观察输出功率的变化来判断是否向最大功率点移动。如果输出功率增加,则继续同方向的改变;如果输出功率减少,则改变方向。P&O方法实现简单,但存在振荡和误判的问题。
增量电导法(INC):INC方法通过计算光伏电池的瞬时电导增量和电压增量来判断是否达到最大功率点。当瞬时电导增量等于电压增量的负值时,光伏电池工作在最大功率点。INC方法比P&O方法更稳定,但计算量较大。
基于梯度变步长的电导增量法:这种方法结合了INC方法和变步长策略,通过动态调整步长来加快跟踪速度并减少振荡。它根据光伏电池的输出功率变化率来调整步长,当输出功率变化率较大时,采用较大的步长;当输出功率变化率较小时,采用较小的步长。这种方法在保持跟踪速度的同时,提高了跟踪精度。
需要注意的是,以上算法主要适用于无遮挡条件下的单峰值功率输出情况。在存在遮挡或多峰值功率输出的情况下,这些算法可能会失效。因此,对于复杂的光伏系统,需要采用更先进的MPPT算法,如结合常规算法的复合MPPT算法、Fibonacci法、短路电流脉冲法等。
综上所述,MPPT技术是逆变器中提高光伏系统发电效率的重要手段。通过实时跟踪光伏电池的最大功率点,MPPT能够充分利用太阳能资源,提高光伏系统的发电量和经济效益。
光伏逆变器、储能逆变器、储能变流器、PCS傻傻分不清楚,带你一文清楚
光伏逆变器、储能逆变器、储能变流器、PCS的区别与联系
一、定义与功能
光伏逆变器
定义:光伏逆变器是将光伏设备(如太阳能电池板)产生的直流电(DC)转换为交流电(AC)的设备。
功能:主要作用是通过光伏设备将太阳能转变的直流电逆变为交流电,可供负载使用、并入电网或存储起来。
储能逆变器
定义:储能逆变器通常指用于储能系统中的逆变器,它能够实现直流电与交流电之间的双向转换。
功能:在充电过程中,将交流电转换为直流电存储到蓄电池中;在放电过程中,将蓄电池中的直流电转换为交流电供负载使用或并入电网。
储能变流器(PCS)
定义:储能变流器(Power Conversion System,简称PCS)是储能系统中的核心设备,用于控制蓄电池的充电和放电过程,进行交直流电的转换。
功能:由DC/AC双向变流器、控制单元等构成,能够精确控制蓄电池的充放电,实现交流电与直流电之间的高效转换。
二、分类与应用
光伏逆变器
分类:集中式逆变器、组串式逆变器、微型逆变器。
集中式逆变器:适用于大型地面电站、分布式工商业光伏,一般输出功率大于250KW。
组串式逆变器:适用于大型地面电站、分布式工商业光伏(一般输出功率小于250KW,三相)、户用光伏(一般输出功率小于等于10KW,单相)。
微型逆变器:适用于分布式光伏(一般输出功率小于等于5KW,三相)、户用光伏(一般输出功率小于等于2KW,单相)。
应用:主要用于将光伏系统产生的直流电转换为交流电,供负载使用或并入电网。
储能逆变器
分类:通常根据应用场景和功率大小进行分类,如大储、工商业储、户储等。
应用:在储能系统中,储能逆变器负责将交流电转换为直流电进行充电,以及将直流电转换为交流电进行放电。
储能变流器(PCS)
分类:传统储能变流器、Hybrid储能变流器、一体机。
传统储能变流器:主要使用交流耦合方案,应用场景主要是大储。
Hybrid储能变流器:主要采用直流耦合方案,应用场景主要是户储。
一体机:储能变流器与电池组的集成产品,便于安装和维护。
应用:储能变流器广泛应用于各种储能系统,如地面电站、独立储能电站、工商业储能、户用储能等。
三、联系与区别
联系
功能相似:光伏逆变器、储能逆变器、储能变流器(PCS)都涉及直流电与交流电之间的转换。
应用场景重叠:在某些应用场景下,如户用光伏和户用储能,这些设备可能同时存在并协同工作。
区别
主要功能:光伏逆变器主要用于将光伏系统产生的直流电转换为交流电;储能逆变器则实现交流电与直流电之间的双向转换;储能变流器(PCS)则更侧重于控制蓄电池的充放电过程,实现高效、精确的交直流电转换。
应用场景:光伏逆变器主要应用于光伏系统;储能逆变器主要应用于储能系统;储能变流器(PCS)则广泛应用于各种储能系统,包括地面电站、独立储能电站、工商业储能、户用储能等。
分类与功率:三者根据应用场景和功率大小有不同的分类和功率范围。
综上所述,光伏逆变器、储能逆变器、储能变流器(PCS)在定义、功能、分类与应用等方面存在明显的区别与联系。了解这些区别与联系有助于更好地理解和应用这些设备,以满足不同场景下的需求。
光伏并网逆变器的工作原理
逆变器是将直流电转化为交流电的关键设备。在较低直流电压的情况下,如12V或24V,为了达到标准的220V交流电压,必须设计升压电路。这可以通过推挽逆变电路、全桥逆变电路或高频升压逆变电路实现。其中,推挽逆变电路因其结构简单、可靠性高而被广泛应用。它通过将升压变压器的中性插头接于正电源,并让两只功率管交替工作来输出交流电力。由于功率晶体管共地边接,使得驱动及控制电路变得简单。此外,变压器的漏感能有效限制短路电流,提高电路的稳定性。不过,这种电路的缺点是变压器利用率较低,并且对感性负载的带动能力较差。
全桥逆变电路克服了推挽逆变电路的一些缺点。它通过调节功率晶体管输出脉冲宽度,来改变输出交流电压的有效值。由于该电路具备续流回路,即使面对感性负载,也能保持输出电压波形的稳定,不会出现畸变。然而,全桥逆变电路的上、下桥臂功率晶体管不共地,这需要专门的驱动电路或隔离电源。此外,为防止上、下桥臂同时导通,必须设计先关断后导通的电路,即必须设置死区时间,这使得电路结构较为复杂。
在中、小容量的逆变器中,根据直流电压的高低选择不同的逆变电路类型是必要的。推挽逆变电路适用于较低的直流电压,能够有效简化驱动及控制电路,并提高电路的可靠性。全桥逆变电路则适用于较高直流电压的情况,它克服了推挽逆变电路的一些缺点,但在结构复杂度和成本方面有所增加。选择合适的逆变电路,对于提高逆变器的性能和效率至关重要。
无论是推挽逆变电路还是全桥逆变电路,都需要根据具体的应用场景和需求来选择。在实际应用中,设计师需要综合考虑各种因素,如电路的复杂度、成本、可靠性以及负载特性等,以确保逆变器能够满足预期的性能要求。
通过合理选择和优化逆变电路的设计,可以显著提高光伏并网逆变器的性能,从而更好地服务于电网和各种用电设备。随着技术的进步,逆变器的设计和制造也将更加智能化和高效化,为用户提供更加可靠和高效的电力解决方案。
光伏逆变器中的 MPPT:技术原理及其对发电效率的影响
光伏逆变器中的 MPPT 技术原理及其对发电效率的影响
MPPT(Maximum Power Point Tracking,最大功率点跟踪)技术是光伏逆变器中提高光伏发电效率的重要手段。下面将详细阐述 MPPT 技术的原理及其对发电效率的影响。
一、MPPT 技术原理
MPPT 技术是指在不同的光照强度和温度条件下,通过调整光伏逆变器的输出电压和电流,使光伏组件始终工作在最大功率点上,从而实现光伏发电系统的最大功率输出。该过程实质是一个动态寻优过程,其核心原理是利用功率与电压和电流的关系,通过不断调整逆变器的输出电压和电流,使其与当前光照强度下的最大功率点相匹配。
具体来说,MPPT 技术通过以下步骤实现:
实时监测:逆变器实时监测光伏组件的输出电压和电流。功率计算:根据实时监测到的电压和电流值,计算出当前光伏组件的输出功率。比较与调整:将当前输出功率与前一时刻的输出功率进行比较,如果当前功率较大,则保持当前电压和电流值;如果当前功率较小,则调整电压和电流值,使光伏组件向最大功率点移动。循环迭代:上述过程不断循环迭代,直至光伏组件工作在最大功率点上。在 MPPT 技术的实现过程中,常用的控制算法有恒电压跟踪法、扰动观察法、增量电导法以及模糊控制等。
恒电压跟踪法:该方法基于光伏电池最大功率点对应某个恒定电压的假设,通过控制光伏电池输出恒定电压来实现最大功率点跟踪。该方法简单易实现、可靠性高,但忽略了环境温度对光伏电池输出电压的影响。扰动观察法:该方法通过给光伏电池一个小的扰动电压信号,然后测量光伏电池输出功率的变化,根据功率变化的方向调整扰动电压的符号,使光伏电池逐渐接近最大功率点。该方法结构简单、测量参数少,但存在跟踪精度和速度受初始值和跟踪步长影响的问题,且在最大功率点附近可能产生振荡。增量电导法:该方法通过测量光伏电池的瞬时电导增量与电压增量的比值来判断工作点电压与最大功率点之间的关系,并根据判断结果调整电压值,使光伏电池逐渐接近最大功率点。该方法避免了扰动观察法的盲目性,提高了跟踪精度和速度。模糊控制法:该方法将光伏输入量进行模糊化处理,通过模糊推理及反模糊处理进行最大功率跟踪控制。该方法具有非线性智能控制的特点,能够适应复杂多变的光照和温度条件。二、MPPT 技术对发电效率的影响
采用 MPPT 技术的光伏逆变器可以显著提高光伏发电系统的发电效率。具体来说,MPPT 技术对发电效率的影响主要体现在以下几个方面:
充分利用太阳能资源:MPPT 技术能够实时调整光伏组件的工作电压,使其始终保持在最大功率点附近运行,从而充分利用太阳能资源,提高发电效率。适应不同光照和温度条件:MPPT 技术能够适应不同的光照强度和温度条件,使光伏系统在不同的环境条件下都能保持较高的发电效率。提高系统稳定性:MPPT 技术通过实时调整光伏组件的工作状态,使光伏发电系统更加稳定可靠,减少了因光照和温度变化引起的功率波动。据统计,采用 MPPT 技术的光伏逆变器相比传统逆变器,发电效率可提高 10%~20%。这一提升对于提高光伏发电系统的经济效益和环保效益具有重要意义。
三、总结
MPPT 技术是光伏逆变器中提高发电效率的关键技术之一。通过实时调整光伏组件的工作电压,MPPT 技术可以使光伏发电系统在不同的光照强度和温度条件下始终保持在最大功率点附近运行,从而有效地提高了发电效率。随着技术的不断进步和成本的降低,MPPT 技术将在光伏发电领域发挥更加重要的作用。
光伏逆变器详解
光伏逆变器详解
逆变器又称电源调整器,是在太阳能光伏并网发电过程中用于将太阳能电池产生的直流电转化为交流电的器件。
一、光伏逆变器的结构
光伏逆变器的结构主要由以下几部分组成:
直流输入端:主要由太阳能电池板、直流断路器、直流保险丝、直流接触器等组成。太阳能电池板负责将太阳能转化为直流电,直流断路器和直流保险丝用于保护逆变器和电池板,直流接触器则用于控制电池板的输出。
逆变器芯片:是光伏逆变器的核心部件,由功率半导体器件、驱动电路、控制电路等组成。逆变器芯片的主要作用是将直流电转换为交流电,以满足家庭、企业等用电需求。
交流输出端:主要由交流接触器、交流保险丝、交流滤波器等组成。交流接触器用于控制交流电的输出,交流保险丝用于保护逆变器和用电设备,交流滤波器则用于滤除交流电中的杂波和干扰。
控制电路:主要由微处理器、传感器显示器等组成。控制电路的主要作用是监测逆变器的工作状态,控制逆变器的输出电压和频率,保证逆变器的稳定工作。
散热器:主要由散热片、散热风扇等组成。散热器的主要作用是散热,保证逆变器的正常工作。
二、光伏逆变器的原理
光伏逆变器的工作原理主要包括以下几个方面:
直流电转换为交流电:通过功率半导体器件(如绝缘栅双极晶体管,IGBT)的开关动作,将直流电转换为交流电。
电压变换:通过变压器或电抗器等设备,将转换后的交流电进行升压或降压,以适应不同的应用需求。
滤波和调节:通过滤波电路和调节电路,使得输出的交流电质量满足并网标准。
三、光伏逆变器的主要技术指标
光伏逆变器的主要技术指标包括:
输出电压的稳定度:蓄电池在充放电过程中会受到影响,导致其电压不稳定,会有区间的变化。为了确保电压的稳定性,输出端电压波动范围为±10%。
输出电压的波形失真度:通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许10%)。
额定输出频率:输出频率偏差应在1%以内。
负载功率因数:正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。
逆变器效率:主流逆变器标称效率在80%~95%之间,对小功率逆变器要求其效率不低于85%。
保护措施:包括欠压、过压、过电流、短路、输入反接、防雷以及过温保护等。
噪音:逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。
四、光伏逆变器的作用
光伏逆变器不仅具有直交流变换功能,还具有以下重要作用:
自动运行和停机功能:能够根据光照强度等条件自动启动和停止工作。
最大功率跟踪控制功能:实时追踪光伏电池的最大功率输出点,提高发电效率。
防单独运行功能(并网系统用):在电网故障时能够自动断开与电网的连接,防止孤岛效应的发生。
自动电压调整功能(并网系统用):能够根据电网电压的变化自动调整输出电压,保持电网的稳定运行。
直流检测功能(并网系统用):对直流输入端的电压和电流进行实时监测,确保系统的正常运行。
直流接地检测功能(并网系统用):能够检测直流输入端是否接地,确保系统的安全运行。
五、光伏并网逆变器的关键技术
光伏并网逆变器的关键技术包括:
最大功率追踪:为了提高光伏系统的发电效率,需要实时追踪光伏电池的最大功率输出点。常用的最大功率追踪方法有“峰值电流控制”、“恒压控制”和“MPPT控制”等。
并网控制策略:是确保逆变器并网后能安全、稳定、高效运行的关键。常用的并网控制策略包括“间接电流控制”、“直接电流控制”和“基于电压/频率的控制”等。
孤岛效应防护:在电网故障时,光伏并网逆变器需要能够防止孤岛效应,保证设备和人员的安全。为此,需要设计合理的孤岛效应防护策略。
六、光伏逆变器目前主流厂家
目前市场上主流的光伏逆变器厂家包括阳光电源、科华、首航新能等。这些厂家在光伏逆变器领域具有深厚的技术积累和丰富的产品经验,能够提供高效、稳定、可靠的光伏逆变器产品。
七、光伏逆变器的未来发展
未来光伏逆变器的发展将呈现以下趋势:
效率更大化:通过技术创新和工艺改进,不断提高光伏逆变器的转换效率,以最大化太阳能电池的发电效率。
更加集成:未来的光伏系统将向着更加集成的方式发展,将逆变器、电池管理系统、智能控制等融为一体,形成一体化的能量管理系统。
智能化发展:通过引入物联网、大数据、人工智能等技术,实现联网故障检测、远程监控及优化控制的目的,提高光伏系统的智能化水平。
光储充一体化:光储充一体化将是未来的主导方向,将光伏发电、储能和充电设施相结合,形成一体化的能源供应系统。
以上内容仅供参考,如需更多信息,建议查阅光伏逆变器相关文献或咨询光伏逆变器领域专业人士。
光伏发电逆变器工作原理
逆变器的工作原理涉及到将直流电转换为交流电的过程。首先,通过震荡电路可以将直流电转变为交流电。接下来,交流电会被输送到线圈中进行升压处理,此时交流电表现为方形波。为了使交流电符合电网标准,需要对其进行进一步处理,使其转变成正弦波形。
直流电转变为交流电的过程还包括整流步骤。利用二极管的单向导电特性,可以构建一个电桥结构,确保电路的一端始终是电流的流入点,而另一端始终是电流的流出点。这种设置能够产生电压随时间呈正弦变化的直流电。若需获得更加平滑的直流电,则通常需要额外的整流步骤,例如连接一个电容器来平滑电压波动。
在实际应用中,逆变器通过这些步骤实现了从直流电到交流电的转换。震荡电路、线圈升压、整流和电容平滑都是这一转换过程中不可或缺的环节。震荡电路负责生成交流信号,线圈升压确保交流电压达到所需水平,整流则将交流电转换为符合使用需求的正弦波形,而电容则用于平滑电压,确保输出的稳定性。
逆变器的应用范围非常广泛,无论是家用电器还是工业设备,都需要稳定的交流电源。通过上述步骤,逆变器能够高效地将太阳能电池板等设备产生的直流电转换为适用于各种电器使用的交流电,为现代能源转换和利用提供了重要支持。
深度总结光伏逆变器的工作原理
深度总结光伏逆变器的工作原理
光伏逆变器是将直流电能转换为交流电能的关键设备,在光伏发电系统中起着至关重要的作用。以下是对光伏逆变器工作原理的深度总结:
一、逆变过程概述
逆变是将直流电能变换成交流电能的过程。光伏逆变器通过内部的逆变电路,利用电力电子开关器件的通断,将输入的直流电能转换为输出的交流电能。这一过程需要控制电路产生和调节驱动脉冲,以控制开关器件的通断。
二、逆变电路的核心作用
逆变电路是逆变装置的核心,它决定了逆变器的性能和效率。逆变电路通过电力电子开关器件(如IGBT、晶闸管等)的交替导通与关断,在变压器或电感等储能元件的作用下,形成交流电压或电流。
三、全控型逆变器工作原理
全控型逆变器通常采用IGBT等具有自关断能力的电力电子开关器件。以单相输出的全桥逆变主电路为例,当逆变器接上直流电源后,通过PWM脉宽调制控制IGBT管的导通或截止,形成正负交变的方波电压。在变压器初级线圈上,这种交变方波电压通过高频PWM控制,最终在变压器次级得到交流电压。为了释放储存能量,通常在IGBT处并联二极管,使能量返回到直流电源中去。
四、半控型逆变器工作原理
半控型逆变器则采用晶闸管等不具备自关断能力的电力电子开关器件。通过交替触发晶闸管,电流交替流向变压器的初级,从而在变压器的次级得到交流电。在电路中,电感可以限制换向电容的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间。同时,反馈二极管可将电感中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。
五、逆变器的技术性能
光伏逆变器的主要技术性能包括额定输出电压、输出电压的不平衡度、输出电压的波形失真度、额定输出频率、负载功率因数、额定输出电流(或额定输出容量)、额定输出效率以及保护特性等。这些性能参数决定了逆变器的适用范围和性能优劣。
六、逆变器的使用与维护
在使用逆变器时,应严格按照使用维护说明书的要求进行设备的连接和安装,并遵循规定的操作顺序。逆变器通常具有自动保护功能,在发生断路、过电流、过电压、过热等现象时,无需人工停机。在维护检修方面,应定期检查逆变器的接线是否牢固,有无松动现象,并严格按照维护手册的规定步骤进行检查和维修。
综上所述,光伏逆变器的工作原理涉及逆变电路的设计与控制、电力电子开关器件的通断以及逆变器的技术性能等多个方面。通过深入了解这些原理,可以更好地理解和应用光伏逆变器,为光伏发电系统的稳定运行提供有力保障。
光伏逆变器的电路结构、原理及故障处理!
光伏逆变器的电路结构、原理及故障处理
一、光伏逆变器的电路结构
光伏逆变器的电路结构主要由以下六部分组成:
输入电路:为主逆变电路提供可确保其正常工作的直流工作电压。主逆变电路:是逆变装置的核心,通过电力电子开关的导通与关断,完成逆变的功能。该电路分为隔离式和非隔离式两种。输出电路:对主逆变电路输出的交流电波形、频率、电压、电流的幅值和相位等进行修正、补偿、调理,以确保输出电能的稳定性和质量。控制电路:为主逆变电路提供一系列的控制脉冲,以控制逆变开关器件的导通与关断,从而配合主逆变电路完成逆变功能。辅助电路:将输入电压变换成适合控制电路工作的直流电压,并包含各自的检测电路,用于监测和反馈系统状态。保护电路:主要包括输入过欠压保护、输出过欠压保护、过流保护、短路保护、孤岛保护等,以确保逆变器在异常情况下能够安全停机,保护设备和人身安全。二、光伏逆变器的工作原理
光伏逆变器的工作原理是将直流电(DC)转变为交流电(AC)。具体过程如下:
直流电输入:光伏组件产生的直流电通过输入电路进入逆变器。逆变过程:在主逆变电路中,半导体功率开关器件在控制电路的作用下以极快的速度(如1/100秒)开关,将直流电切断并重新组合成交流电。这个过程需要精确的控制和调节,以确保输出交流电的波形、频率、电压等参数符合电网要求。输出调整:输出电路对逆变后的交流电进行进一步的修正和补偿,以确保其稳定性和质量。并网控制:对于并网型逆变器,还需要通过微处理器电路进行并网控制,使逆变器输出的交流电压值、波形、相位等维持在规定的范围内,与电网同步运行。三、光伏逆变器的故障处理
光伏逆变器在运行过程中可能会遇到各种故障,以下是一些常见的故障及其处理方法:
绝缘阻抗低:使用排除法,逐一检查逆变器输入侧的组串,找到问题组串后重点检查直流接头是否有水浸短接支架或烧熔短接支架,以及组件本身是否有黑斑烧毁导致漏电。母线电压低:如果出现在早晚时段,可能是正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,则使用排除法检查问题所在。漏电流故障:根本原因是安装质量问题,如选择错误的安装地点、低质量的设备等。可以通过洒粉找出漏电点并做好绝缘工作,如果是材料本身问题则只能更换材料。直流过压保护:设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。可以调整设计参数或增加保护措施来避免此类故障。逆变器开机无响应:确保直流输入线路没有接反,并仔细阅读逆变器说明书确保正负极后再压接。逆变器内置反接短路保护,在恢复正常接线后应能正常启动。电网故障:包括电网过压、欠压、过/欠频、无电压、缺相等。处理方法包括找供电局协调电压、正确选择并网并严抓电站建设质量、检查并网线路和缺相电路等。对于三相不平衡等问题,需要采取额外的措施进行解决。展示:
以上内容涵盖了光伏逆变器的电路结构、工作原理以及常见故障处理方法,希望对解决您的问题有所帮助。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467