发布时间:2025-07-27 20:50:30 人气:
深度总结光伏逆变器的工作原理
深度总结光伏逆变器的工作原理
光伏逆变器是将直流电能转换为交流电能的关键设备,在光伏发电系统中起着至关重要的作用。以下是对光伏逆变器工作原理的深度总结:
一、逆变过程概述
逆变是将直流电能变换成交流电能的过程。光伏逆变器通过内部的逆变电路,利用电力电子开关器件的通断,将输入的直流电能转换为输出的交流电能。这一过程需要控制电路产生和调节驱动脉冲,以控制开关器件的通断。
二、逆变电路的核心作用
逆变电路是逆变装置的核心,它决定了逆变器的性能和效率。逆变电路通过电力电子开关器件(如IGBT、晶闸管等)的交替导通与关断,在变压器或电感等储能元件的作用下,形成交流电压或电流。
三、全控型逆变器工作原理
全控型逆变器通常采用IGBT等具有自关断能力的电力电子开关器件。以单相输出的全桥逆变主电路为例,当逆变器接上直流电源后,通过PWM脉宽调制控制IGBT管的导通或截止,形成正负交变的方波电压。在变压器初级线圈上,这种交变方波电压通过高频PWM控制,最终在变压器次级得到交流电压。为了释放储存能量,通常在IGBT处并联二极管,使能量返回到直流电源中去。
四、半控型逆变器工作原理
半控型逆变器则采用晶闸管等不具备自关断能力的电力电子开关器件。通过交替触发晶闸管,电流交替流向变压器的初级,从而在变压器的次级得到交流电。在电路中,电感可以限制换向电容的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间。同时,反馈二极管可将电感中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。
五、逆变器的技术性能
光伏逆变器的主要技术性能包括额定输出电压、输出电压的不平衡度、输出电压的波形失真度、额定输出频率、负载功率因数、额定输出电流(或额定输出容量)、额定输出效率以及保护特性等。这些性能参数决定了逆变器的适用范围和性能优劣。
六、逆变器的使用与维护
在使用逆变器时,应严格按照使用维护说明书的要求进行设备的连接和安装,并遵循规定的操作顺序。逆变器通常具有自动保护功能,在发生断路、过电流、过电压、过热等现象时,无需人工停机。在维护检修方面,应定期检查逆变器的接线是否牢固,有无松动现象,并严格按照维护手册的规定步骤进行检查和维修。
综上所述,光伏逆变器的工作原理涉及逆变电路的设计与控制、电力电子开关器件的通断以及逆变器的技术性能等多个方面。通过深入了解这些原理,可以更好地理解和应用光伏逆变器,为光伏发电系统的稳定运行提供有力保障。
光伏逆变器详解
光伏逆变器详解
逆变器又称电源调整器,是在太阳能光伏并网发电过程中用于将太阳能电池产生的直流电转化为交流电的器件。
一、光伏逆变器的结构
光伏逆变器的结构主要由以下几部分组成:
直流输入端:主要由太阳能电池板、直流断路器、直流保险丝、直流接触器等组成。太阳能电池板负责将太阳能转化为直流电,直流断路器和直流保险丝用于保护逆变器和电池板,直流接触器则用于控制电池板的输出。
逆变器芯片:是光伏逆变器的核心部件,由功率半导体器件、驱动电路、控制电路等组成。逆变器芯片的主要作用是将直流电转换为交流电,以满足家庭、企业等用电需求。
交流输出端:主要由交流接触器、交流保险丝、交流滤波器等组成。交流接触器用于控制交流电的输出,交流保险丝用于保护逆变器和用电设备,交流滤波器则用于滤除交流电中的杂波和干扰。
控制电路:主要由微处理器、传感器显示器等组成。控制电路的主要作用是监测逆变器的工作状态,控制逆变器的输出电压和频率,保证逆变器的稳定工作。
散热器:主要由散热片、散热风扇等组成。散热器的主要作用是散热,保证逆变器的正常工作。
二、光伏逆变器的原理
光伏逆变器的工作原理主要包括以下几个方面:
直流电转换为交流电:通过功率半导体器件(如绝缘栅双极晶体管,IGBT)的开关动作,将直流电转换为交流电。
电压变换:通过变压器或电抗器等设备,将转换后的交流电进行升压或降压,以适应不同的应用需求。
滤波和调节:通过滤波电路和调节电路,使得输出的交流电质量满足并网标准。
三、光伏逆变器的主要技术指标
光伏逆变器的主要技术指标包括:
输出电压的稳定度:蓄电池在充放电过程中会受到影响,导致其电压不稳定,会有区间的变化。为了确保电压的稳定性,输出端电压波动范围为±10%。
输出电压的波形失真度:通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许10%)。
额定输出频率:输出频率偏差应在1%以内。
负载功率因数:正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。
逆变器效率:主流逆变器标称效率在80%~95%之间,对小功率逆变器要求其效率不低于85%。
保护措施:包括欠压、过压、过电流、短路、输入反接、防雷以及过温保护等。
噪音:逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。
四、光伏逆变器的作用
光伏逆变器不仅具有直交流变换功能,还具有以下重要作用:
自动运行和停机功能:能够根据光照强度等条件自动启动和停止工作。
最大功率跟踪控制功能:实时追踪光伏电池的最大功率输出点,提高发电效率。
防单独运行功能(并网系统用):在电网故障时能够自动断开与电网的连接,防止孤岛效应的发生。
自动电压调整功能(并网系统用):能够根据电网电压的变化自动调整输出电压,保持电网的稳定运行。
直流检测功能(并网系统用):对直流输入端的电压和电流进行实时监测,确保系统的正常运行。
直流接地检测功能(并网系统用):能够检测直流输入端是否接地,确保系统的安全运行。
五、光伏并网逆变器的关键技术
光伏并网逆变器的关键技术包括:
最大功率追踪:为了提高光伏系统的发电效率,需要实时追踪光伏电池的最大功率输出点。常用的最大功率追踪方法有“峰值电流控制”、“恒压控制”和“MPPT控制”等。
并网控制策略:是确保逆变器并网后能安全、稳定、高效运行的关键。常用的并网控制策略包括“间接电流控制”、“直接电流控制”和“基于电压/频率的控制”等。
孤岛效应防护:在电网故障时,光伏并网逆变器需要能够防止孤岛效应,保证设备和人员的安全。为此,需要设计合理的孤岛效应防护策略。
六、光伏逆变器目前主流厂家
目前市场上主流的光伏逆变器厂家包括阳光电源、科华、首航新能等。这些厂家在光伏逆变器领域具有深厚的技术积累和丰富的产品经验,能够提供高效、稳定、可靠的光伏逆变器产品。
七、光伏逆变器的未来发展
未来光伏逆变器的发展将呈现以下趋势:
效率更大化:通过技术创新和工艺改进,不断提高光伏逆变器的转换效率,以最大化太阳能电池的发电效率。
更加集成:未来的光伏系统将向着更加集成的方式发展,将逆变器、电池管理系统、智能控制等融为一体,形成一体化的能量管理系统。
智能化发展:通过引入物联网、大数据、人工智能等技术,实现联网故障检测、远程监控及优化控制的目的,提高光伏系统的智能化水平。
光储充一体化:光储充一体化将是未来的主导方向,将光伏发电、储能和充电设施相结合,形成一体化的能源供应系统。
以上内容仅供参考,如需更多信息,建议查阅光伏逆变器相关文献或咨询光伏逆变器领域专业人士。
光伏逆变器的分类
光伏逆变器的分类
光伏逆变器是光伏发电系统的核心设备,其主要功能是将光伏发电系统所发的直流电转化成交流电。根据不同的分类标准,光伏逆变器可以分为多种类型。
一、按输出交流电压的相数分类
单相逆变器:输出的是单相交流电,适用于家庭、小型商业场所等单相负载较多的场合。三相逆变器:输出的是三相交流电,适用于大型工业和商业场所,以及需要三相供电的负载。二、按应用场合分类
并网逆变器:主要用于将光伏发电系统产生的电能并入电网,适用于大型光伏发电站和分布式光伏发电系统。并网逆变器需要满足电网的接入要求,具有电能质量高、谐波含量低等特点。离网逆变器:主要用于无电网或电网不稳定的地区,为离网负载提供电能。离网逆变器通常具有储能功能,可以在光照不足或夜间为负载供电。三、按应用的光伏发电类型分类
集中式光伏发电逆变器:适用于集中式光伏发电系统,即将大量光伏组件集中安装在一个或多个地点,通过逆变器将直流电转换为交流电并入电网。分布式光伏发电逆变器:适用于分布式光伏发电系统,即将光伏组件分散安装在建筑物的屋顶、墙面等位置,通过逆变器将直流电转换为交流电供本地负载使用或并入电网。四、按能量是否存储分类
并网逆变器(无储能功能):仅具有并网发电功能,不具备储能功能。当光照充足时,逆变器将光伏组件产生的电能并入电网;当光照不足或夜间时,逆变器不工作。储能逆变器:除了具有并网发电功能外,还具备储能功能。当光照充足时,逆变器将多余的电能存储在储能设备(如蓄电池)中;当光照不足或夜间时,逆变器从储能设备中取出电能供负载使用或并入电网。五、按技术路线分类
集中式逆变器:将大量并行的光伏组件串连到同一台集中逆变器的直流输入端,汇总成较大直流功率,再转变为交流电。集中式逆变器具有输出功率大、技术成熟、电能质量高、成本低等优点,但最大功率跟踪电压范围较窄,组件配置灵活性较低。组串式逆变器:对单串或数串光伏组件进行单独的最大功率点跟踪,再经过逆变以后并入交流电网。组串式逆变器最大功率跟踪电压范围宽,组件配置灵活,发电时间长,且功率密度高,安装维护简单。集散式逆变器(此处可能存在笔误,通常指的是“分布式逆变器”中的一种特殊形式或结合集中式与组串式优点的逆变器,但严格意义上并非一种独立的分类):结合了集中式逆变器和组串式逆变器的优点,具有更高的灵活性和效率。微型逆变器:每个微型逆变器一般只对应单块或数块光伏组件,可以对每一块光伏组件进行单独的最大功率点跟踪,再经过逆变以后并入交流电网。微型逆变器能够对每块光伏组件进行独立的最大功率跟踪控制,实现精细化调节及监控。综上所述,光伏逆变器根据不同的分类标准可以分为多种类型。在实际应用中,需要根据光伏发电系统的规模、负载类型、接入电网的要求以及经济性等因素综合考虑选择合适的逆变器类型。
光伏逆变器的效率一般是多少?
逆变器的效率一般在90%左右。逆变器的效率就是逆变器输入功率与输出功率之比。一般情况下,光伏逆变器的标称效率是指纯阻负载,80%负载情况下的效率。逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输入功率与输出功率之比。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。
在光伏系统中,光伏组件发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V或380V的交流电。但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V的蓄电池,其电压值可在10.8~14.4V之间变动(超出这个范围可能对蓄电池造成损坏)。对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压的变化量应不超过额定值的±5%,同时当负载发生突变时,其输出电压偏差不应超过额定值的±10%。
提高逆变器的转换效率有很大的重要性。比如我们提高1%的转换效率,500KW的逆变器,平均每天算4小时,逆变器每天可以多发出将近20度电,那么一年既可以多发出将近7300度电,十年即可多发出73000度电。这样就相当于一台5KW逆变器的发电量。这样可以节省一台5KW逆变器的电站。所以为了提高最大利益,需要尽可能的提高逆变器的转换效率。
户用光伏储能:绿色能源的未来之选
户用光伏储能:绿色能源的未来之选
户用光伏储能系统作为一种高效、绿色的能源解决方案,正逐渐成为家庭能源消费的新趋势。该系统利用太阳能发电,并通过储能设备将电能储存起来,以供家庭在需要时使用。以下是对户用光伏储能系统的详细介绍。
一、系统概述
户用光伏储能系统主要由光伏组件、储能设备(如高性能锂离子电池)、智能控制器和逆变器等组成。该系统能够将太阳能高效转换为电能,并储存起来,为家庭提供稳定、可靠的电力供应。它不仅满足家庭日常用电需求,还能降低电费支出,并减少对传统能源的依赖。
二、核心技术
高效光伏技术:采用高效的光伏组件,提高太阳能转换为电能的效率。先进储能技术:配备长寿命、高安全性和快速充放电能力的储能设备,确保电能的稳定储存和供应。智能管理技术:通过智能控制器和逆变器实现电能的智能调度和管理,提高能源利用效率,降低运行成本。三、系统原理
户用光伏储能系统主要包括光伏发电和储能两个过程:
光伏发电:光伏板接收太阳光照射,利用光电效应将太阳光的能量转化为电能。逆变器将直流电转换为交流电,供用户使用或馈回电网。光伏储能:充电过程中,太阳光照射到光伏电池板上产生的直流电能,通过逆变器转换为交流电后输送到储能设备中储存。放电过程中,当能量需求高于光伏发电系统当前产生的能量时,储能系统释放电能供电。四、系统类型
户用光伏储能系统根据应用场景和需求的不同,可分为以下几种类型:
混合式家庭光伏+储能系统:由光伏组件、锂电池、混合型逆变器、智能电表等组成。可实现光伏经DC-DC转换直接给电池充电,支持用户自行设置充电及放电时间。在市电正常时,由光伏并网系统和市电为负载供电;市电断电时,由储能系统和光伏并网系统联合供电。
耦合型家庭光伏+储能系统:包含光伏供电系统和蓄电池供电系统。可实现光伏组件发出的直流电经并网逆变器转换为交流电后,再经交流耦合型储能逆变器将多余电量转换成直流电储存在电池中。与电网100%兼容,安装简便,容易拓展。
离网型家庭光伏+储能系统:由光伏组件、锂电池、离网储能逆变器等组成。不依赖于电网,通过光伏组件将太阳能转换为电能并直接给电池充电。当需要用电时,离网储能逆变器将电池中的直流电转换为交流电供负载使用。适用于偏远地区或电网不稳定的地区。
独立光伏储能系统:由太阳能电池板、电池组、充放电控制器、逆变器等组成。完全独立于公共电网的光伏发电系统,具有较高的可靠性和环保性。
夏季储能系统:旨在将夏季光伏发电的多余电能储存起来,以供冬季或其他低光照时期使用。特别注重储能容量和效率,以应对季节性的电力需求变化。
并离网储能系统:结合了并网和离网功能的储能系统,可以在并网和离网两种模式下运行,并根据实际情况无缝切换。具有灵活性、可靠性和高效性等特点。
五、应用场景
户用光伏储能系统的应用场景广泛,包括:
家庭住宅应用:为家庭提供日常用电,确保用电的连续性和稳定性。农村与偏远地区应用:为这些地区的居民提供可靠的电力供应,满足生活、生产等基本需求。交通与通讯应用:如电动汽车充电桩、高速公路服务区、通讯基站等场所,提供稳定的电力供应。公共设施与景观应用:如公园、广场、道路照明等公共设施,实现绿色、环保的能源供应。海岛与船舶应用:为这些特殊环境提供可靠的电力供应。商业与工业应用:实现自给自足的电力供应,降低能源成本,提高能源利用效率。六、应用优势
户用光伏储能系统具有以下应用优势:
节能环保:利用太阳能发电,减少了对传统能源的依赖,降低了能源消耗和碳排放。稳定可靠:具有独立运行的能力,确保家庭用电的稳定性和可靠性。经济实惠:随着光伏技术的不断发展,系统投资成本逐渐降低,同时能减少电费支出。智能化管理:通过智能控制器和逆变器实现电能的智能调度和管理,用户可实时监控系统的运行状态和能源使用情况。七、市场前景
随着可再生能源和清洁能源的快速发展,以及政府对可再生能源政策的支持和市场需求的不断增长,户用光伏储能系统的市场前景十分广阔。德力时代等企业在光伏技术和储能技术方面的优势,将推动户用光伏储能系统的进一步普及和应用。
综上所述,户用光伏储能系统以其高效、环保、智能化的特点,成为绿色能源的未来之选。随着技术的不断进步和市场的不断扩大,它将在未来能源领域发挥越来越重要的作用。
光伏逆变器中的 MPPT:技术原理及其对发电效率的影响
光伏逆变器中的 MPPT 技术原理及其对发电效率的影响
MPPT(Maximum Power Point Tracking,最大功率点跟踪)技术是光伏逆变器中提高光伏发电效率的重要手段。下面将详细阐述 MPPT 技术的原理及其对发电效率的影响。
一、MPPT 技术原理
MPPT 技术是指在不同的光照强度和温度条件下,通过调整光伏逆变器的输出电压和电流,使光伏组件始终工作在最大功率点上,从而实现光伏发电系统的最大功率输出。该过程实质是一个动态寻优过程,其核心原理是利用功率与电压和电流的关系,通过不断调整逆变器的输出电压和电流,使其与当前光照强度下的最大功率点相匹配。
具体来说,MPPT 技术通过以下步骤实现:
实时监测:逆变器实时监测光伏组件的输出电压和电流。功率计算:根据实时监测到的电压和电流值,计算出当前光伏组件的输出功率。比较与调整:将当前输出功率与前一时刻的输出功率进行比较,如果当前功率较大,则保持当前电压和电流值;如果当前功率较小,则调整电压和电流值,使光伏组件向最大功率点移动。循环迭代:上述过程不断循环迭代,直至光伏组件工作在最大功率点上。在 MPPT 技术的实现过程中,常用的控制算法有恒电压跟踪法、扰动观察法、增量电导法以及模糊控制等。
恒电压跟踪法:该方法基于光伏电池最大功率点对应某个恒定电压的假设,通过控制光伏电池输出恒定电压来实现最大功率点跟踪。该方法简单易实现、可靠性高,但忽略了环境温度对光伏电池输出电压的影响。扰动观察法:该方法通过给光伏电池一个小的扰动电压信号,然后测量光伏电池输出功率的变化,根据功率变化的方向调整扰动电压的符号,使光伏电池逐渐接近最大功率点。该方法结构简单、测量参数少,但存在跟踪精度和速度受初始值和跟踪步长影响的问题,且在最大功率点附近可能产生振荡。增量电导法:该方法通过测量光伏电池的瞬时电导增量与电压增量的比值来判断工作点电压与最大功率点之间的关系,并根据判断结果调整电压值,使光伏电池逐渐接近最大功率点。该方法避免了扰动观察法的盲目性,提高了跟踪精度和速度。模糊控制法:该方法将光伏输入量进行模糊化处理,通过模糊推理及反模糊处理进行最大功率跟踪控制。该方法具有非线性智能控制的特点,能够适应复杂多变的光照和温度条件。二、MPPT 技术对发电效率的影响
采用 MPPT 技术的光伏逆变器可以显著提高光伏发电系统的发电效率。具体来说,MPPT 技术对发电效率的影响主要体现在以下几个方面:
充分利用太阳能资源:MPPT 技术能够实时调整光伏组件的工作电压,使其始终保持在最大功率点附近运行,从而充分利用太阳能资源,提高发电效率。适应不同光照和温度条件:MPPT 技术能够适应不同的光照强度和温度条件,使光伏系统在不同的环境条件下都能保持较高的发电效率。提高系统稳定性:MPPT 技术通过实时调整光伏组件的工作状态,使光伏发电系统更加稳定可靠,减少了因光照和温度变化引起的功率波动。据统计,采用 MPPT 技术的光伏逆变器相比传统逆变器,发电效率可提高 10%~20%。这一提升对于提高光伏发电系统的经济效益和环保效益具有重要意义。
三、总结
MPPT 技术是光伏逆变器中提高发电效率的关键技术之一。通过实时调整光伏组件的工作电压,MPPT 技术可以使光伏发电系统在不同的光照强度和温度条件下始终保持在最大功率点附近运行,从而有效地提高了发电效率。随着技术的不断进步和成本的降低,MPPT 技术将在光伏发电领域发挥更加重要的作用。
光伏发电系统需要多大容量逆变器?
最好用3000W的逆变器,本身空载用电不多,还能可靠的、放心的工作。
负载分电热负载和电动负载两类。标1000W的电热负载消耗功率就是1000W,而标1000W的电动负载消耗功率却是1300W左右,这是因为所标的1000W是输出的机械功率,是扭矩与转速的乘积除以常数9550(9550=60(秒)乘以1000(千瓦)除以2π(圆周做功)),实际耗电是电压与电流的乘积再乘功率因数(电流落后于电压相位角的余弦值),这本来就不是一回事。所有电动机都有一个效率问题,也就是不可能全部电能都变成机械能。一般的讲,电动机质量越好,效率越高。全铜线电机就比铝线电机效率高,定子和转子之间的间隙越小效率越高。用无氧铜绕成的电机比普通铜效率高,硅钢片的质量也有很大关系。总之,电动机发热越少,效率越高。
起动的时候电流甚至达到正常工作电流的5至7倍。电动负载最好用5000W逆变器。
2-12. 如何设计离网太阳能供电系统
答:
首先要明确使用要求:
一、先计算负载容量
1.照明用负载容量,2.动力用负载容量,3.加热用负载容量。负载容量就是所有用电器具的电功率乘以用电时间的全部乘积之和。
例如:1.照明灯5盏,3盏7瓦的,两盏15瓦的,合计51瓦,每天17点到23点照明6小时。
计算:51瓦×6小时=306瓦时=0.306千瓦时(1千瓦时=1度电=1000瓦时)。
2.冰箱1台,功率100瓦,24小时间歇工作,每日耗电1.5度。
3. 42寸LED电视机1台,耗电70瓦,每天5小时,日耗电0.35度。
4. 台式电脑一台,耗电150瓦,每天6小时,日耗电0.9度。
四项合计每日总耗电量:0.306千瓦时+1.5千瓦时+0.35千瓦时+0.9千瓦时=3.056千瓦时,大约每天3个字,也就是3度电。
二、计算太阳能电池板(光伏板)
每块光伏板参数:尺寸:1.95m×1m=1.95平米,功率:360瓦,开路电压:45伏,工作电压:37伏,工作电流:9.19安培。
可选用4块,总功率:1440瓦,每小时可发电1.44度,按(冬天)每天四小时,每天可发电5.76度,可完全满足日耗3度的用电量。安装时两块并联,再串联。开路电压:90伏,工作电压:74伏,工作电流:18.38安培。
三、计算电瓶(铅酸蓄电池)
可选用6块12伏100安时的蓄电池串联使用,总电压72伏,容量100安时。总储电量7200瓦时,也就是7.2度(千瓦时)。
由于蓄电池容量原因,如果是天天晴天,每日光伏板发的电负荷用不完,多余的还能充入蓄电池,用电当然没有任何问题,第二天、第三天阴天,也没有问题,但是第四天再连阴天,蓄电池的电将耗尽!蓄电池的电耗尽后,如果一周得不到充电,蓄电池将永久性损坏!此时,必须将蓄电池运到通电的地方去充电。充足后运回来还可以用两天。
若想阴天多用几天,就要成组地增加蓄电池,一组6块,两组12块就能用4天,三组18块就能用一周了。
再一个办法就是少用电,例如电视换17寸,耗电20瓦左右,电脑换笔记本电脑,耗电16瓦左右。电灯换LED灯泡,又亮又省电,还寿命长不怕闪。
四、附件选用
逆变器可选用72伏变220伏,3000瓦的,价格300元左右。
考虑到冰箱起动电流较大,选用大功率的逆变器可保证冰箱的正常使用,用电也费不太多。
充放电控制器,选72伏,20安培的那种。
导线使用2.5平方的(指平方毫米,简称,和房子的平方不是一回事)或4平方的,导线粗可以提高效率,省电且安全。
逆变器光伏逆变器MPPT的作用、原理以及算法
逆变器中光伏逆变器MPPT的作用、原理以及算法
一、MPPT的作用
MPPT(Maximum Power Point Tracking),即最大功率点跟踪,是逆变器中非常核心的技术。由于太阳能电池受到光强、温度以及环境等外界因素的影响,其输出功率是变化的。光强越强,太阳能电池发出的电就越多。带MPPT最大功率跟踪的光伏逆变器就是为了充分利用太阳能电池,使之运行在最大功率点。也就是说,在太阳辐射不变的情况下,有MPPT后的输出功率会比没有MPPT前的要高。MPPT能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最大功率输出。
二、MPPT的原理
MPPT的原理是基于电源输出最大功率的条件,即当负载电阻等于电源的内阻时,电源即有最大功率输出。虽然光伏电池和DC/DC转换电路都是强非线性的,然而在极短的时间内,可以认为是线性电路。因此,只要调节DC-DC转换电路的等效电阻使它始终等于光伏电池的内阻,就可以实现光伏电池的最大输出,也就实现了光伏电池的MPPT。
具体来说,光伏电池阵列与负载通过DC/DC电路连接,最大功率跟踪装置不断检测光伏阵列的电流电压变化,并根据其变化对DC/DC变换器的PWM驱动信号占空比进行调节。通过调节占空比,可以改变DC/DC转换电路的等效电阻,从而使其始终等于光伏电池的内阻,实现最大功率输出。
三、MPPT的算法
目前,光伏阵列的最大功率点跟踪(MPPT)技术已经发展出多种控制方法,常用的有以下几种:
恒电压跟踪法(CVT):CVT是一种简单有效的MPPT方法。它基于光伏电池在最大功率点附近的电压变化较小的特性,通过设定一个恒定的电压值作为参考电压,使光伏电池的输出电压始终跟踪这个参考电压,从而实现最大功率输出。然而,CVT方法受到温度和环境变化的影响,需要定期校准。
干扰观察法(P&O):P&O方法通过周期性地改变光伏电池的输出电压或电流,并观察输出功率的变化来判断是否向最大功率点移动。如果输出功率增加,则继续同方向的改变;如果输出功率减少,则改变方向。P&O方法实现简单,但存在振荡和误判的问题。
增量电导法(INC):INC方法通过计算光伏电池的瞬时电导增量和电压增量来判断是否达到最大功率点。当瞬时电导增量等于电压增量的负值时,光伏电池工作在最大功率点。INC方法比P&O方法更稳定,但计算量较大。
基于梯度变步长的电导增量法:这种方法结合了INC方法和变步长策略,通过动态调整步长来加快跟踪速度并减少振荡。它根据光伏电池的输出功率变化率来调整步长,当输出功率变化率较大时,采用较大的步长;当输出功率变化率较小时,采用较小的步长。这种方法在保持跟踪速度的同时,提高了跟踪精度。
需要注意的是,以上算法主要适用于无遮挡条件下的单峰值功率输出情况。在存在遮挡或多峰值功率输出的情况下,这些算法可能会失效。因此,对于复杂的光伏系统,需要采用更先进的MPPT算法,如结合常规算法的复合MPPT算法、Fibonacci法、短路电流脉冲法等。
综上所述,MPPT技术是逆变器中提高光伏系统发电效率的重要手段。通过实时跟踪光伏电池的最大功率点,MPPT能够充分利用太阳能资源,提高光伏系统的发电量和经济效益。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467