发布时间:2025-05-12 15:10:47 人气:
阳光逆变器dsp通讯故障
绝缘电阻低,母线电压低。
1、绝缘电阻低,使用排除方法,拔下逆变器输入侧的所有弦,然后一一连接,使用逆变器的功能检测绝缘电阻,检测问题串,查找问题串,并检查DC连接器是否具有浸在水中的短路支架或烧毁短路支架,并检查组件本身是否在边缘烧伤了黑点,从而导致组件通过框架泄漏到地面。
2、母线电压低,如果发生在早期/后期,这是一个正常问题,因为逆变器正试图限制发电条件。如果在正常白天发生,则检测方法仍然是排除方法。
光伏发电站数据怎样和手机连接的
通过逆变器上安装的wifi监控模块及专用的通讯芯片连接。
逆变器的运行数据一般是保存在DSP控制芯片上,要往外传输,还需专用的通讯芯片,现在逆变器90%都用采用ARM结构的芯片,在通信方面具有很强的实力。接着通过通讯硬件接口,以某种通讯协议,上传到逆变器厂家云平台服务器,经过解码后变成数据,我们的手机终端或电脑终端,通过网站访问到云平台服务器,就可看到逆变器的运行数据。用手机就可随时查看电站的运行信息,如直流电压、电流、输出功率、每天的发电量等等,如果遇到电站发生故障,手机APP监控程序第一时间就会得到通知,并且可查到故障类型。许多问题远程就可解决,缩短电站维修时间,减少电站的电费损失。
UPS不间断电源中的PWM DSP是什么意思?
在UPS不间断电源中,PWM(脉宽调制)和DSP(数字信号处理器)是两种关键技术,具体含义如下:
PWM(脉宽调制)
PWM是一种通过调节脉冲宽度来控制输出电压或电流的技术。在UPS中,逆变器利用PWM技术将直流电转换为交流电,并通过调整脉冲宽度来生成接近正弦波的纯净输出,从而降低谐波失真和电力损耗。例如,高频IGBT脉宽调制技术(PWM)结合SPWM(正弦脉宽调制)方法,可显著提升输出电压的质量和效率。
DSP(数字信号处理器)
DSP是一种专用于高速数字信号处理的微处理器,负责UPS的实时控制与优化。它通过算法处理整流器、逆变器、电池管理等子系统的信号,确保输出电压稳定、动态响应快速,并支持并机冗余、智能监控等功能。例如,双DSP架构可提升控制精度,实现全数字化矢量控制,而DSP技术还能简化硬件设计,增强系统可靠性和可维护性。
总结:
PWM是实现逆变器高效能量转换的核心技术,直接影响输出电能质量;
DSP则是UPS的“大脑”,通过智能算法协调各模块运行,保障系统稳定性和智能化。
如何从零自学逆变器控制(一)
如何从零开始自学逆变器控制
要掌握逆变器控制,首先需了解理论知识。掌握功率拓扑原理,包括Buck、Boost电路和全桥逆变电路,理解驱动和PWM占空比计算,虽然软件部分可以依赖硬件提供的系数,但《数字信号处理》和《自动控制原理》是基础课程。数字信号处理涉及拉氏变换和离散化,逆变器中的滤波器主要是一阶低通和陷波器。自动控制原理则讲传递函数,重点理解PID中的PI控制,推荐使用串联型,编写程序时需通过Z变换和差分方程。
获取资源是关键。选择TI公司的C2000系列DSP,例如TMS320F280049,从TI官网下载相关资料,如用户手册和SDK库。开始时可从控制一个IO口入手,再逐步深入。C2000Ware库提供例程,旧型号可能需要注册。
学习路径包括理解逆变器的开发套件,如Solar目录下的单相逆变器项目,从原理图和源码入手,同时参考官方的指导文档。掌握基本的单极性或双极性控制,理解控制模式和功率拓扑。
在CCS开发环境中,导入并调试例程,如voltagesourceinvlcfltr.c中的中断程序,理解PI控制参数设计。可以从TI的库中找到逆变器常用的算法,如电压源逆变器的控制。
参数采样是逆变器核心,包括直流电压、交流电压和电流。例如,通过电阻分压法采样直流电压,计算公式预先设定系数简化计算。交流电压采样则用差分电路,计算出合适的系数转换采样值。
电流采样可通过电阻或霍尔传感器,这里以电阻为例,计算电流值的公式同样涉及系数预设。
逆变控制涉及相位生成,如使用斜坡信号乘以正弦函数,以及电压和电流环路的双环路控制。PI控制中,串联型更易于调试,注意中断函数中的函数调用效率。
最后,持续学习和实践,如PID控制的理解,可以参考相关文章深入探讨。通过理论与实践结合,逐步掌握逆变器控制的各个方面。
单相小功率逆变器拓扑
逆变器技术在光伏并网系统中的应用日益广泛,尤其在低压电网指令和无功调节方面面临挑战。常见拓扑结构在抑制漏电流和共模电流方面存在局限性,因此高效抑制漏电流的拓扑架构和共模电流抑制成为关键。本文将详细介绍逆变器拓扑在这些问题上的解决方案和改进。
传统小功率逆变器主要使用H4单相全桥拓扑,但由于存在漏电流问题,需要通过改变调制策略或增加RC吸收电路、输出隔离变压器等方式解决,这些措施会导致效率下降、体积增大和成本增加。德国SMA公司推出的H5结构从根本上解决了漏电流问题,随后出现了一系列解决漏电流的拓扑,如H6、双Buck拓扑等,这些拓扑在提高效率方面表现出色。
抑制共模电流是提升逆变器性能的关键之一。共模电流影响系统安全,降低效率,并引入谐波。逆变器中寄生电容的存在导致共模电压变化,进而产生共模电流。抑制共模电流的方法主要是降低共模电压的频率或维持共模电压不变。在实际应用中,选择合适的拓扑结构对于抑制共模电流至关重要。
H4和H6拓扑在抑制共模电流方面的性能分析表明,H6拓扑相对H4拓扑在共模电流抑制上具有优势。H6逆变拓扑采用单极性SPWM调制,产生高频SPWM输出波形,通过LC滤波器连接市电。控制环路通过采样BUS电压、市电电压和电感电流,实现输出电流与市电电压相位的同步,同时满足各法规对输出电流的要求。在工作原理中,H6逆变桥采用6个开关管驱动波形,实现高频和低频开关管的优化配置,以减少损耗和提高效率。
在H6拓扑中,开关管的选取考虑了开关频率和电流峰值等因素,以确保在稳定工作条件下,高频开关管开关动作时的△Vds范围较小,从而减少开关损耗。此外,通过合理配置二极管、滤波电感和滤波电容,实现逆变器的高效运行和良好的电流输出波形。
为了进一步优化逆变器的性能,设计了差分采样电路和抬升电路,以满足DSP28335的ADC输入电压范围需求。逆变器的输出滤波器采用LC或LCL结构,选择合适的滤波器结构以满足不同应用场合的需求,从而实现对高频谐波的有效衰减。
最后,通过双极性和单极性SPWM控制方式的比较,双极性SPWM虽然在损耗和电感电流纹波方面相对较高,但不存在共模漏电流问题,且不容易产生过零点畸变。因此,在设计逆变器控制策略时,需要综合考虑效率、损耗和系统稳定性等因素。
综上所述,高效抑制漏电流的拓扑架构和共模电流抑制策略是小功率逆变器面临的技术难题。通过采用先进的拓扑结构、优化控制策略和合理配置电路组件,可以显著提升逆变器的性能和可靠性,满足低压电网指令和无功调节的需求。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467