发布时间:2025-04-28 21:40:31 人气:
轻松自制3.5KW逆变器:详解电路原理
轻松自制3.5KW逆变器:电路详解
一项成本仅为1200元却赢得8000元奖金的创新项目,来自湖南科技大学光伏逆变和电力电子研究生团队的合作。他们在立创开源硬件平台的星火计划·外包赛道上,打造了一款3.5KW大功率DC-AC逆变器,适用于24-72V宽输入直流范围,输出220V 50Hz的交流电。
逆变器设计巧妙,重量轻至2.6KG,便于携带,无论居家还是旅行都非常实用。项目核心在于处理宽电压输入范围的挑战,通过LLC调频升压和同步整流BOOST升压,确保在不同直流电压下仍能输出稳定电压。电路结构采用MATLAB仿真的单极性SWPM正弦波调制,确保了方案的可行性。
第一级LLC升压电路采用全桥结构,具备高效率,但无法调节电压。变压器采用2KW并联,输出电压与输入电压比为29:3.256。通过电桥测试谐振频率,频率定在65.5kHz。第二级同步BOOST升压则在低电压下调试,确保MOS管波形无畸变。
逆变部分采用经典的EG8010方案,注意安全操作,通过调节电流微调输出。辅助供电部分包括直流降压、快充控制以及降压模块,确保电路稳定运行。防反接电路采用NMOS保护,而逆变小板则采用金手指连接,便于参数显示。
整个项目的设计需谨慎,共炸毁20个MOS,提示大家仔细检查虚焊和短路。设计中,不同部分的调试难度不一,但提供了逐步调试的建议。星火计划外包赛道提供了机会,让有技术实力的你参与并赢取奖金。
如果你对这个项目感兴趣,可参考开源协议,并在嘉立创EDA开源硬件平台上了解更多详情。期待你的参与,一起创造更多开源佳作!
通信逆变器全桥与半桥电路的差别
通信逆变器全桥与半桥电路的差别主要体现在以下几个方面:
工作方式:
全桥逆变器:由四个驱动管轮流工作于正弦波的各个波段。半桥逆变器:由两个驱动管轮流工作。开关电流:
全桥逆变器:相比半桥逆变器,其开关电流减半,这使得全桥逆变器在大功率应用中具有显著优势。应用功率范围:
全桥逆变器:适用于大功率通信逆变器,能够实现输入输出间的电气隔离并获得合适的输出电压幅值。半桥逆变器:适用于较低负载的通信逆变器,如1KVA至2KVA的范围,成本相对较低,足够满足这一功率段的需求。成本:
半桥逆变器:由于组件数量较少,通常成本低于全桥逆变器。综上所述,全桥和半桥的选择与通信逆变电源的功率紧密相关,大功率应用应选用全桥逆变器,而小功率应用则更适合半桥逆变器。
单相全桥逆变器的操作
单相全桥逆变器的操作主要基于以下原理和步骤:
电子开关的成对工作:
在一个半波周期内,S1和S2闭合,而S3和S4断开。在另一个半波周期内,S3和S4闭合,而S1和S2断开。输出交流电压的产生:
逆变器的输出是可变频率的交流电压,该频率取决于驱动设备的波形频率。当电子开关按上述方式切换时,负载承受的电压会根据开关元件的不同状态而变化,从而产生交流输出。电流路径与开关电阻:
电流路径取决于电子开关的逻辑状态,并受到电子开关电阻值的影响。在二极管D1和D2导通时,循环电流作为正反馈返回到电压发生器。输出电压的有效值计算:
可以使用特定的等式来确定输出电压的理论有效值。死区时间的实现:
为避免相反的开关同时导通,在两个电源命令之间实现了一个小的死区时间。这有助于防止短路和损坏设备。谐波的处理:
如果负载是电感性的,则其电流和电压可能是正弦曲线,但可能包含谐波。这些谐波应该通过与电压发生器并联一个大电容来消除或减少。电子元件的选择:
基于SiC和GaN的电子设备可以提高逆变器的效率,因为它们具有更优异的电性能,如更高的耐温性和更低的内阻。应用场合:
单相全桥逆变器非常适合用于住宅和工业应用,因为它们可以处理可变的直流输入电压并产生非常稳定的交流输出电压。此外,它们还可以处理非线性负载,如电感负载、电容负载和混合负载。逆变器原理
逆变器原理是将直流电转为交流电的一种装置,通常由逆变桥、控制逻辑与滤波电路组成。其应用广泛,包括不间断电源(UPS)、太阳能发电转换等,适用于蓄电池、干电池、太阳能电池等直流源。
逆变桥的工作原理是核心,包括半桥逆变电路、全桥逆变电路、推挽逆变电路。半桥逆变电路原理图示,V1和V2的栅极信号在周期内正反偏各半周,互补输出矩形波,幅值为Um=Ud/2。工作流程涉及电流途径变化,电流值与电感L的大小有关。全桥逆变电路原理图如图三所示,由四个开关管和四个续流二极管构成两个桥臂,可看作两个半桥电路的组合。工作过程包含电流途径变换,输出电压等于输入电压Ud。推挽逆变电路原理图如图五所示,交替驱动两个IGBT,输出矩形波交流电压,变压器匝比为1:1时与全桥逆变电路波形及幅值相同。
控制逻辑电路负责控制各个IGBT管子的开关,以实现所需波形。逻辑控制电路多样,具体实现方式不作详细讨论。在设计时,需注意选择管子,如推挽电路中V1、V2管子承受的电压为2Ud,比全桥电路高一倍。
如何制作48伏转220伏逆变器
制作方法:
若48V直流电源输入不稳定,则需添加一级PFC稳压电路,随后接入全桥逆变器、工频变压器与滤波电路。若目标是提供220V交流电,则关键在于逆变器的控制波形设计。
工作原理:
逆变器是一种将直流转换为交流的装置,其功能与转换器类似,但实现的是电压的逆变过程。转换器将电网交流电压转换为稳定的12V直流输出,而逆变器则将适配器输出的12V直流电压转变为高频高压交流电。两者均采用广泛使用的脉宽调制(PWM)技术。其核心部分包括一个PWM集成控制器,适配器采用UC3842芯片,逆变器则采用TL5001芯片。TL5001的工作电压范围为3.6至40V,内部集成了误差放大器、调节器、振荡器、带死区控制的PWM发生器、低压保护回路及短路保护回路等。
输入接口部分:
输入部分包含三个信号,12V直流输入VIN、工作使能电压ENB及面板电流控制信号DIM。VIN由适配器提供,ENB电压由主板上的微控制器(MCU)提供,其值为0或3V,当ENB=0时,逆变器不工作;而ENB=3V时,逆变器进入正常工作状态;DIM电压由主板提供,其变化范围在0至5V之间,不同的DIM值反馈给PWM控制器的反馈端,从而调整逆变器向负载提供的电流,DIM值越小,逆变器输出的电流就越大。
电压启动回路:
当ENB为高电平时,输出高压用于点亮面板的背光灯管。
PWM控制器:
由内部参考电压、误差放大器、振荡器和PWM、过压保护、欠压保护、短路保护及输出晶体管组成。
直流变换:
由MOS开关管和储能电感构成的电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管进行开关动作,直流电压对电感进行充放电,电感的另一端即可获得交流电压。
LC振荡及输出回路:
确保灯管启动所需的1600V电压,并在灯管启动后将电压降至800V。
输出电压反馈:
当负载运行时,反馈采样电压,确保稳定逆变器电压输出。
全桥逆变器工作原理是怎样的
全桥逆变器是一种常见的电力电子装置,它能够将直流电转换成交流电。它应用广泛,常见于太阳能系统、风能系统以及电动汽车的直流-交流转换等场合。全桥逆变器的工作原理很有趣,下面将为大家详细介绍。
### 1. 全桥逆变器的基本原理
全桥逆变器由四个开关管组成,一端连接负载,另一端连接直流电源。两个对角的开关管将交流电源与负载相连接,另外两个开关管则用来开闭电源正负极,实现电流的逆变。通过控制开闭不同的开关管,输出端可以得到不同的交流电,波形可以由矩形逐渐逼近正弦波。
### 2. 全桥逆变器的工作过程
当第一个开关管导通,第三个开关管断开时,电源的正极连接到输出负载,与此同时,负载的负极连接到电源的负极。这个开闭状态下,负载的电流方向与电池电流方向相同,此时输出为正半周期的交流电。而当第一个开关管断开,第三个开关管导通时,负载的电流方向与电池电流方向相反,此时输出为负半周期的交流电。通过周期性地重复这两个开闭状态,可以实现交流电的输出。
### 3. 全桥逆变器的优势与应用
由于全桥逆变器采用的是双周期控制方式,可以输出近似于正弦波的交流电。与其他逆变器相比,全桥逆变器具有输出波形好、负载适应性强等特点。因此,在一些对输出波形要求较高的场合,如需要给灯泡供电的工业生产线,全桥逆变器往往是首选。
### 4. 全桥逆变器的控制方法
全桥逆变器的控制方法多种多样,常用的有脉宽调制(PWM)控制和谐振控制。脉宽调制是通过控制开关管的通断时间来实现对输出电压幅值的控制,从而得到所需要的交流电压。谐振控制则是在逆变器的输入输出侧串联谐振电路,通过控制谐振电路的频率和相位来实现对输出电压的控制。
### 5. 全桥逆变器的改进和发展
为了更好地满足不同领域的需求,全桥逆变器不断在结构和控制方法上进行改进和发展。例如,近年来出现了基于多电平技术的全桥逆变器,可以实现更高的输出电压质量;还有基于多能源融合的全桥逆变器,可以实现多种能源系统之间的互联互通。
### 结束语
全桥逆变器作为一种重要的电力电子装置,在现代工业生产和能源转换中发挥着重要作用。它的工作原理基于四个开关管的开闭控制,通过不同的开闭状态实现交流电的输出。与其他逆变器相比,全桥逆变器具有很多优势,有着广泛的应用前景。随着技术的不断发展,相信全桥逆变器在未来会有更多的改进和创新,满足不同领域的需求。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467