发布时间:2025-04-25 15:30:36 人气:

风电/光伏并网调试需要做检测项目?
光伏并网调试的检测项目与风电并网调试的检测项目大致相同,但具体检测内容和标准可能会因光伏系统的特性和所在地的电网要求而有所不同。
以下是一些常见的光伏并网调试检测项目
电压和频率适应性测试:验证光伏系统在各种电压和频率条件下的适应性。
逆变器性能测试:评估逆变器的转换效率和可靠性,确保其符合并网要求。
防雷和接地系统测试:验证防雷和接地系统的性能,防止过电压和电流对设备和电网造成损害。
一次调频和有功功率控制测试:测试光伏系统在一次调频和有功功率控制方面的性能,确保其在系统频率波动时能够迅速调整输出。
无功功率控制和电压调节测试:验证光伏系统在无功功率控制和电压调节方面的性能,以确保其对电网的稳定运行做出贡献。
保护和监控系统测试:验证光伏系统的保护和监控系统的功能是否正常,以确保在故障发生时能够及时切断电源并报警。
电网适应性测试:测试光伏系统在各种电网条件下的适应性,包括电压波动、谐波干扰、开关操作等。
以下是一些常见的风电并网调试检测项目:
电压、频率适应性测试:验证风电场电压、频率适应能力。
动态无功补偿装置性能测试:评估无功补偿装置的性能表现。
AGC、AVC系统联调试验:进行自动发电控制(AGC)和自动电压控制(AVC)系统的联调试验,以确保风电场在并网运行时能稳定运行。
一次调频试验:测试风电场的一次调频能力,以确保在系统频率波动时,风电场能够迅速调整输出,维持系统频率稳定。
整站等值建模:建立风电场的等值模型,以模拟风电场的运行特性。
并网运行特性检测:检测风电场的并网运行特性,包括有功功率控制、无功功率控制、电压控制等。
阻抗建模、验证扫频法光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)
并网逆变器序阻抗扫描与稳定性分析,结合锁相环与电流环,是新能源变流器研究的重要部分。本文旨在介绍一种基于Simulink仿真的光伏并网逆变器扫频与稳定性分析方法。
首先,概述了逆变器序阻抗扫描的关键步骤,包括阻抗建模与验证,以及扫频法的应用。通过设置扫描范围与点数,可以准确评估逆变器在不同电网条件下的性能。程序附带详尽注释,确保代码清晰易懂,包含阻抗建模与扫频两个部分。
进一步,提供了在线讲解,演示如何高效使用仿真程序,一次可扫描五个点,实测30个点仅需2到5分钟。仿真结果包括Nyquist奈奎斯特曲线,为分析提供直观数据支持。
稳定性分析采用序阻抗方法,理论与仿真结果一致。然而,在考虑电网阻抗影响的电流环路分析(dq阻抗)时,遇到特定问题。例如,当电网阻抗为10mH时,仿真显示不稳定现象,序阻抗判定同样不稳定。详细分析结果如下。
运行结果显示,特定条件下逆变器稳定性受到挑战。针对此现象,后续研究可深入探讨电流环路设计与优化,以提高逆变器在弱电网条件下的稳定性能。
参考文献部分,引用了李杨和伍文华的研究,进一步支持本文分析方法的理论基础与应用价值。文章中提及的引用会确保准确性与合法性。
最后,为确保学术诚信,引用来源均注明出处或引用为参考文献。如发现任何不妥之处,请随时联系作者,以便及时修正。
大数据建模一般有哪些步骤?
数据建模是数据科学项目核心环节之一,它在数据分析中扮演着至关重要的角色。下面详细介绍大数据建模的几个主要步骤:
1. 数据测量:
数据测量涉及多个层面,包括但不限于ECU内部数据的抓取、车内总线数据的捕获以及模拟量数据的获取。特别地,对于新能源汽车中电机、逆变器和整流器等设备产生的高达100KHz的信号,ETAS提供了完善的解决方案。
2. 大数据管理与分析:
在当前的汽车嵌入式控制系统开发环境中,开发人员可以通过多种途径(如真实物体、仿真环境、模拟计算等)收集到描述目标系统行为和性能的巨量数据。
3. 虚拟模型建模与校准:
基于大数据管理与分析阶段对数据的深入分析,我们能够提炼出参数间的相互影响关系,以及相关物理变量的特性曲线。这为建立虚拟模型并对其进行校准提供了依据。
4. 测试与验证(XiL):
测试与验证阶段涉及多个层面,包括模型在环验证(MiL)、软件在环验证(SiL)、虚拟测试系统验证(VTS)以及硬件在环验证(HiL)。ETAS的COSYM平台能够支持在这些环节中开展仿真验证工作,实现同一软件平台的一体化仿真。
关于数据建模的更深入内容,可以参考CDA数据分析师课程。CDA证书已得到中国成人教育协会和工业与信息化部的认可。通过CDA认证的考生不仅可以获得CDA数据分析师中文证书,还有机会获得CDA INSTITUTE英文证书以及额外的工信部数据分析师证书,为就业提供强有力的支持。点击此处预约免费试听课,开启职业发展新篇章。
盘点6种电路仿真软件,总有一款适合你
在电路设计的世界里,选择合适的仿真软件如同挑选合适的工具,能让你的工作事半功倍。今天,电路仿真专家杨帅锅将带领我们深入探讨六款备受推崇的电源仿真软件,帮你了解它们各自的优缺点,以便找到最适合你的那一款。
1. 六大仿真软件的对比与特性
PSPICE与SABER: 作为模拟领域的代表,它们的精度无人能及,但代价是运行速度极慢,不适合实时仿真。由于PSPICE嵌套于Cadence之中,专业芯片设计者更倾向于使用它。然而,它们无法直接进行环路分析,需要依赖平均模型,上手难度较高。
PSIM: 这款软件兼容连续和离散系统,运行快速,建模能力强,是许多国内工程师的首选。然而,它在开关与环路仿真上的能力有限。
SIMLIPS: 作为SPICE的简化版,它更稳定,收敛速度快,特别适合分析开关器件和系统级仿真。虽然与PSPICE类似,但SIMLIPS的性能更佳,减少了崩溃风险。
SIMULINK与PLECS: 两者操作相似,但PLECS凭借优化的算法和求解器,速度比SIMULINK快约3倍。它们专长于连续和离散系统,尤其是离散建模和代码实现,环路分析采用独特的暴力求解方法。SIMULINK的上手难度相对较低,而PLECS适合有一定基础的用户。
易用性对比: PSPICE和SABER的挑战性较大,SIMULINK和PLECS则稍显友好。PSIM以其简单易学,成为初学者的首选。对于新手,PSIM是快速入门的理想选择,而对深入研究者,SIMULINK或PLECS则提供了更丰富的功能。
2. PLECS搭建逆变器仿真模型实战
让我们通过实际操作,了解如何在PLECS中构建逆变器模型。点击回看,跟随步骤搭建闭环控制的离网逆变器模型,为硬件实现提供理论依据。以下是关键步骤:
搭建功率级模型: 从零开始,选择器件并连接,注意区分电气属性与信号控制的线缆。
PWM方波生成: 设计单极性倍频调制的PWM波形,将其与IGBT桥臂相连,观察波形。
仿真调试: 设置求解器参数,仿真时间和间隔,调整正弦波幅度和频率,观察开环状态下的输出。
闭环设计: 将开环占空比转为闭环输出,手动切换开环与闭环状态,观察负载电流、输出电压等参数。
通过以上介绍,希望你对电路仿真软件有了更深的理解,选择最适合的工具,你的电路设计之路将更加顺畅。当然,电路设计的旅程远不止于此,嵌入式物联网的世界里,持续学习和实践是提升技能的关键。祝你在仿真软件的世界中探索无尽的可能!
南京正弦波逆变器推荐
随着人们对城市环境的日益关切,电动汽车的发展得到了一个难得的机遇。在城市交通中,电动大客车由于载量大,综合效益高,成为优先发展的对象。电动大客车大都采用三相交流电机,由于电机功率大,三相逆变器中的器件需要承受高电压和大电流应力的作用,较高的dv/dt又使电磁辐射严重,并且需要良好的散热。而采用多重串联型结构的大功率逆变器则降低了单个器件承受的电压应力,降低了对器件的要求;降低了dv/dt值,南京正弦波逆变器推荐,南京正弦波逆变器推荐,减少了电磁辐射,南京正弦波逆变器推荐,器件的发热也较大减少;由于输出电平种类增加,控制性能更好。逆变器又称电源调整器。南京正弦波逆变器推荐
状态反馈控制:状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。合肥逆变器推荐逆变器两次开机间隔时间不少于5秒。
安全与隔离是普通商用电源与医疗电源的一个重大差别。通常,除了一些实验分析类仪器,医疗设备大多安装在病床或手术台附近,离人和操作者的距离比较近,外壳常常会被触及到。医疗设备内部有各种各样的强,弱电的部件,如果强弱电之间的隔离或者是外壳材料绝缘有问题,就会非常危险。安全测试方面一般医疗设备电源都必须得到UL60601-1、C-UL、EN60601-1等安全认证。输入输出端必须要4,000V以上的隔离电压,而且要求对地漏电流低,符合安规爬电距离要求。而对于强电部分需采用双重绝缘,尤其有可能与设备外壳接触的部分更要加强绝缘设计。
1.选择车载电源除了价格因素外,主要需要考虑的是车载电源对输入电压的要求和输出功率的大小,此外由于各种用电器的功率差别很大,因此要根据使用需求选择车载电源,原则是够用为主。2、根据使用的电器的种类不同需选择合适的车载电源,对于日常的阻性用电器选择方波、修正波、正弦波的都可以合使用,对于感性的用电器则必须选择正弦波逆变器了。3、方波/修正波逆变电源不能带感性负载和容性负载,不能带动空调,冰箱,也难以为高质量的音响电视提供电源。严格上讲方波/修正波逆变电源会影响用电器的使用寿命,这些问题在使用正弦波逆变器时不会出现。逆变器用户可以使用各种形式的电源为交流负载供电。
光伏逆变器的效率影响着光伏发电系统的整体效率,其安装事项不可忽视,需有专业的操作,以确保提供光伏逆变器适宜稳定的运行环境。选择好安装位置后,如何安装光伏逆变器需要确认以下几点:1、在安装前首先应该检查逆变器是否在运输过程中有无损坏。2、在选择光伏逆变器安装场地时,应该保证周围内没有任何其他电力电子设备的干扰。3、在进行电气连接之前,务必采用不透光材料将光伏电池板覆盖或断开直流侧断路器。暴露于阳光,光伏阵列将会产生危险电压。4、所有安装操作必须且由专业技术人员完成。5、光伏系统发电系统中所使用线缆必须连接牢固,良好绝缘以及规格合适。6、所有的电气安装必须满足当地以及国家电气标准。逆变器确认手上没有其它金属物,以免发生蓄电池短路,灼伤人体。上海超声波逆变器厂家推荐
逆变器使用的功率开关管数量很少。南京正弦波逆变器推荐
所谓PWM脉宽调制技术(Pulse Width Modulation,PWM),是用一种参考波(通常是正弦波,有时也采用梯形波或注入零序谐波的正弦波或方波等)为调制波(Modulating Wave),而以N倍于调制波频率的三角波(有时也用锯齿波)为载波(Carrier Wave)进行波形比较,在调制波大于载波的部分产生一组幅值相等,而宽度正比于调制波的矩形脉冲序列用来等效调制波,用开关量取代模拟量,并通过对逆变电源开关管的通/断控制,把直流电变成交流电,这种技术就叫做脉宽控制逆变技术。[1]由于载波三角波(或锯齿波)的上下款度是线性变化的,故这种技术就叫做脉宽控制逆变技术。由于载波三角波(或锯齿波)的上下宽度是线性变化的,故这种调制方式也是线性的,当调制波为正弦波时,输出矩形脉冲序列的脉冲宽度按正弦规律变化,这种调制技术通常又称为正弦脉宽调制南京正弦波逆变器推荐
深圳市保益新能电气有限公司坐落在大浪街道浪口社区华荣路496号德泰工业区1号厂房4层402,是一家专业的电气设备、电源产品、逆变器,UPS,通讯电源,储能电源产品、工业电源、电池充放电电源设备、电池充放电管理系统设备、数字电源、无功补偿器或者功率矫正器、数字控制技术软件、工业控制软件、电力计量产品、新能源设备、太阳能、并网逆变器、离网逆变器、汇流箱、控制器,通讯设备产品、节能电子产品、回馈式电源负载的研发、销售及相关信息咨询。公司。公司目前拥有较多的高技术人才,以不断增强企业重点竞争力,加快企业技术创新,实现稳健生产经营。公司业务范围主要包括:UPS/EPS电源,双向逆变器,安防电源,激光储能电源等。公司奉行顾客至上、质量为本的经营宗旨,深受客户好评。公司深耕UPS/EPS电源,双向逆变器,安防电源,激光储能电源,正积蓄着更大的能量,向更广阔的空间、更宽泛的领域拓展。
PLECS 应用示例(77):三相T型逆变器(Three-Phase T-Type Inverter)
本文展示了一款用于并网应用的三相T型逆变器,采用Wolfspeed SiC MOSFET。图1显示了电路图,演示了如何选择器件、控制器参数和调制方法以影响逆变器的热性能。模型研究了逆变器在不同运行条件下的性能,确保系统安全高效运行。
T型逆变器类似于三电平中点箝位(NPC)逆变器,提供改进的谐波性能,同时减少零件数量和外部开关器件的导通损耗。本示例展示了一个22 kVA额定功率的T型逆变器,将800 V直流母线转换为三相60 Hz、480 V(线路,rms)配电。
模型配置了三种不同开关类型的SiC MOSFET,分别具有不同的额定电压、额定电流和RdsOn值,用于评估其热性能。每个器件都被建模为具有定制掩模配置的子系统,包括MOSFET和体二极管,以及热模型。组件掩模参数包括导通电阻和体二极管正向电压,以确定电流流过路径,影响开关损耗。
控制器采用解耦的同步参考系电流控制器,用于生成dq电压参考,通过独立的PI调节器将逆变器输出电流调节至设定点。PI控制器包括去耦前馈项,使用简单的同步参考帧锁相环(PLL)测量电压参考相位角,然后转换为三相电压参考,馈送到调制器,用户可选择不同的调制方案。
调制器组件实现不同的调制方法,如SPWM、SVPWM、THIPWM、THZSPWM和DPWM,以比较其对半导体损耗的影响。例如,DPWM在单位功率因数下的损耗最低,但当功率因数角接近0.5时,SPWM和SVPWM方法显示出较高的损耗。
通过操纵控制器设置、调制方案、开关频率、死区时间、控制器增益以及分析设备类型、并联设备数量和外部冷却或散热器的影响,可以试验控制器设置并分析系统级电气规格。参数扫描是确定设计决策如何在一系列操作条件下影响转换器性能的有效方法。
该模型突出显示了PLECS的热建模能力,并可以作为研究控制器设计对其他拓扑结构效率影响的例子。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467