Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

电压逆变器死区电压

发布时间:2025-04-18 16:00:07 人气:



死区什么意思?

简介:

通常叫做死区时间,deadtime,常用于功率开关控制信号翻转时避免发生误触发。

很多电源管理类芯片都会通过检测反馈电流或反馈电压,对一个或多个外部功率器件进行控制,例如MOSFET或IGBT等等。这些反馈电流或电压信号,常常会被功率器件开关时产生的噪声所影响,导致输入芯片内部的信号叠加了一些由导线寄生电感和芯片寄生电容引起的spike,这些spike噪声会导致芯片内部产生误触发,输出错误的控制信号。

为了避免spike噪声的影响,通常在控制信号翻转后到反馈信号稳定的一端时间内,对反馈信号的运算电路进行屏蔽,这段时间就是死区时间。

设计方法 :死区主要是针对IGBT开关管来说的,理想情况下,逆变器的单桥臂的IGBT总是互补地导通和关断。但由于IGBT在关断过程中,存在拖尾效应,故关断时间比开通时间相对较长。若在关断过程中,同一桥臂上地IGBT立即导通,则必然导致直流母线电压直通而损害IGBT。这在高频开关电路显更为显著,因此,在实际应用中,使同一桥臂的上下IGBT的导通和关断错开一定的时间,即死区时间,以保证同一桥臂的上下IGBT总是先关断后导通。

注入死区时间地方法有多种,如对称式,混合式、延时导通以及提前导通补偿等。但最简单的实现方法是延时导通。硬件上可采取一个RC延时和一个或门来实现;软件则可直接调用延时程序来实现;对于2000系列DSP来说,可直接设置死区时间。

逆变器原理

逆变器原理是将直流电转换为交流电的过程。以下是对逆变器原理的详细解释:

基本转换过程

逆变器接收直流电压作为输入。通过内部的电路和元件,将直流电压转换为高频的高压交流电。

核心芯片作用

逆变器采用如TL5001等芯片作为核心控制元件。TL5001芯片内部包含误差放大器、调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等,这些部分共同协作完成电压转换和电路保护的功能。

主功率元件的选择

主功率元件在逆变器中起着至关重要的作用。目前常用的功率元件包括达林顿功率晶体管、功率场效应管、绝缘栅晶体管和可关断晶闸管等。在小容量低压系统中,MOSFET因其较低的通态压降和较高的开关频率而被广泛使用。在高压大容量系统中,IGBT模块因其优势而被采用。在特大容量系统中,GTO作为功率元件被广泛应用。

其他关键元件

逆变器中还包括场效应管或IGBT、变压器、电容、二极管、比较器以及主控芯片等关键元件。这些元件共同协作,确保逆变器能够稳定、高效地完成直流到交流的转换。

电路复杂程度

逆变器的功率大小和精度直接关系到电路的复杂程度。一般来说,功率越大、精度越高的逆变器,其电路结构越复杂。

综上所述,逆变器原理涉及多个方面的技术和元件的协同作用,共同实现了将直流电转换为交流电的功能。

逆变器工作原理

逆变器工作原理是将直流电转换为交流电的过程。以下是逆变器工作原理的详细解释:

基本转换过程

逆变器是一种DC to AC的变压器,与转化器形成电压逆变的过程。转化器将电网的交流电压转变为稳定的直流输出,而逆变器则是将Adapter输出的直流电压转变为高频的高压交流电。

核心技术

逆变器采用脉宽调制技术,其核心部分是一个PWM集成控制器,如TL5001芯片。该芯片内部设有误差放大器、调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等。

输入接口

输入部分包括12V直流输入VIN、工作使能电压ENB及Panel电流控制信号DIM。VIN由Adapter提供,ENB电压由主板上的MCU提供,控制逆变器的工作状态。DIM电压由主板提供,用于调节逆变器向负载提供的电流大小。

电压启动回路

当ENB为高电平时,逆变器输出高压去点亮Panel的背光灯灯管。

PWM控制器功能

PWM控制器负责内部参考电压、误差放大、振荡和PWM生成等功能,同时还具备过压保护、欠压保护、短路保护等安全功能。

直流变换

逆变器通过MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,从而在电感的另一端得到交流电压。

LC振荡及输出回路

该回路确保灯管启动所需的1600V电压,并在灯管启动后将电压降至800V,以保证灯管的正常工作。

输出电压反馈

当负载工作时,逆变器通过反馈采样电压来稳定输出电压,确保输出电压的稳定性和可靠性。

死区补偿(非线性补偿)方法介绍

死区时间在逆变器中起着关键作用,它是指上桥臂和下桥臂导通与截止之间的时间间隔,避免上、下桥臂同时导通产生短路现象。然而,加入死区时间会导致逆变器性能降低。为了优化死区补偿,本文将详细介绍其原理、仿真模型配置、死区效应以及解决方法。

仿真模型配置涉及逆变器输出与星型连接电抗器的连接,采用闭电流控制方式输出三相电流。在SPWM波形的基础上,模型仿真特别关注优化对象,即死区补偿,输出是否连接电机并不影响优化过程。在低速情况下,由于反电势较小,模型可以近似简化。

带死区的逆变器模型中,三相电感波形显示原始模型产生的电流值存在明显畸变。死区效应表现为:当相电流为正时,下桥臂的体二极管导通导致负脉冲时间偏长;反之,当相电流为负时,上桥臂的体二极管导通导致正脉冲时间变长。此现象在轻载低频情况下更加明显,可能引发电流钳制,加剧电流波形畸变。

针对死区效应,通过调整对应桥臂的占空比来实现补偿,以克服死区对逆变器输出的影响。补偿量的确定和正负补偿的选择成为关键考虑因素。

补偿量可通过Vdead值来计算,公式如下:

[公式]

补偿时机基于输出电流方向的判断,方法涉及转子角度与电流电压相位差的计算,确定Id与Iq的比值。

补偿原理通过将一个周期划分为六个等分区间,每个区间仅有一相电流过零,其他两相电流方向不变。根据电流角度计算补偿量,并应用饱和函数和PI控制器进行动态调整,以有效抑制电流纹波。

最终,仿真结果显示,死区补偿启动后,Id、Iq的纹波得到显著抑制,优化了逆变器的输出性能。通过动态调整补偿量和使用PI控制器,死区补偿方法有效解决了死区效应带来的电流波形畸变问题。

逆变器的工作原理是什么 逆变器使用注意事项

逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。逆变器转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,逆变器则采用TL5001芯片。TL5001的工作电压范围3.6~40V,其内部设有一个误差放大器,一个调节器、振荡器、有死区控制的PWM发生器、低压保护回路及短路保护回路等。

输入接口部分:输入部分有3个信号,12V直流输入VIN、工作使能电压ENB及Panel电流控制信号DIM。VIN由Adapter提供,ENB电压由主板上的MCU提供,其值为0或3V,当ENB=0时,逆变器不工作,而ENB=3V时,逆变器处于正常工作状态;而DIM电压由主板提供,其变化范围在0~5V之间,将不同的DIM值反馈给PWM控制器反馈端,逆变器向负载提供的电流也将不同,DIM值越小,逆变器输出的电流就越大。

电压启动回路:ENB为高电平时,逆变器输出高压去点亮Panel的背光灯灯管。

PWM控制器:有以下几个功能组成:内部参考电压、误差放大器、振荡器和PWM、过压保护、欠压保护、短路保护、输出晶体管。

直流变换:由MOS开关管和储能电感组成电压变换电路,输入的脉冲经过推挽放大器放大后驱动MOS管做开关动作,使得直流电压对电感进行充放电,这样电感的另一端就能得到交流电压。

LC振荡及输出回路:保证灯管启动需要的1600V电压,并在灯管启动以后将电压降至800V。

输出电压反馈:当负载工作时,反馈采样电压,起到稳定逆变器电压输出的作用。

直流电压要一致。逆变器输出功率必须大于电器的使用功率,特别对于启动时功率大的电器,如冰箱、空调,还要留大些的余量。正、负极必须接正确逆变器接入的直流电压标有正负极。红色为正极( ),黑色为负极(—),蓄电池上也同样标有正负极,红色为正极( ),黑色为负极(—),连接时必须正接正(红接红),负接负(黑接黑)。连接线线径必须足够粗,并且尽可能减少连接线的长度。

应放置在通风、干燥的地方,谨防雨淋,并与周围的物体有20cm以上的距离,远离易燃易爆品,切忌在该机上放置或覆盖其它物品,使用环境温度不大于40℃。

充电与逆变不能同时进行。即逆变时不可将充电插头插入逆变输出的电气回路中。两次开机间隔时间不少于5秒(切断输入电源)。请用干布或防静电布擦拭以保持机器整洁。在连接机器的输入输出前,请首先将机器的外壳正确接地。为避免意外,严禁用户打开机箱进行操作和使用。怀疑机器有故障时,请不要继续进行操作和使用。在连接蓄电池时,确认手上没有其它金属物,以免发生蓄电池短路,灼伤人体。

使用环境,基于安全和性能的考虑,安装环境应具备以下条件:1)干燥:不能浸水或淋雨;2) 阴凉:温度在0℃与40℃之间;3)通风:保持壳体上5CM内无异物,其它端面通风良好。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言