发布时间:2025-04-11 11:50:51 人气:

PLECS TI C2000嵌入式代码生成 应用范例13(122):并网三电平NPC逆变器的SVPWM控制
并网三电平NPC逆变器的SVPWM控制与嵌入式代码生成应用概述
该文章介绍了使用空间矢量脉宽调制(SVPWM)和中性点平衡技术在电流闭环中对并网三电平NPC逆变器的仿真。此演示模型展示了如何在使用德州仪器(TI)C2000 MCU的PLECS嵌入式编码器上实现典型工作流程。结合PLECS RT Box,可以直接验证MCU的性能。
电源电路包括通过LCL滤波器连接到电网的三相NPC逆变器。当“Sun”处于标称辐射水平时,直流输入提供800 V的全电压。两个直流电容器分别向逆变器的上半部分和下半部分提供输入。SVPWM算法中包含了中性点平衡技术。
控制部分包含两个闭环d-q电流控制器和带中性点平衡方案的三电平SVPWM。控制器模型中实现了ADC和PWM块,将直流链路电压、交流电流、交流电压和滤波电容器电流的测量引入到模型环境中。
在“Controller”子系统中,实现了两个闭环d-q电流控制器和带中性点平衡方案的三电平SVPWM。它包含来自TI C2000目标组件库的ADC和PWM块。SVPWM方案中有三个NPC支路(相位u、v和w),每个支路包含四个开关,通过控制这四个开关,逆变器输出允许三种不同的电压水平。
中性点平衡技术基于主动控制中性点电流。该技术基于在SVPWM矢量图中操纵零矢量对以平衡中性点。
配置TI C2000目标库组件时,SVPWM调制器的输出以占空比的形式提供给PWM块作为输入,配置包括载波类型、载波频率和消隐时间参数。通过RT Box启动板接口板上的dip开关“DI-29”可以启用或禁用PWM信号。
仿真部分展示了如何将“Controller”子系统直接转换为TI 28379D启动板的目标特定代码。在实时模型运行中,观察实时波形,调整MCU中控制程序的参数。
结论部分总结了此模型演示了支持TI C2000 MCU嵌入式代码生成的并网NPC逆变器系统的实现。
光伏并网逆变器和独立逆变器在控制上有什么区别
独立逆变器的输出电压、相位、幅度和频率是在初始设定时确定的。这种逆变器通常被称为离网逆变器,它不依赖于电网,因此无需考虑电网的状态。
光伏并网逆变器则需要在并网发电前,首先检测电网电压的相位和频率,完成锁相操作。只有在锁相成功后,才能进行并网发电,将电力送入电网。
独立逆变器的工作模式主要依赖于内部预设的参数,而并网逆变器则需要实时监测电网状态,确保与电网同步。独立逆变器适合用于偏远地区或不具备电网接入条件的地方,而并网逆变器则适用于具备电网接入条件的场合,能够实现光伏电力的有效利用。
在实际应用中,独立逆变器和并网逆变器的控制策略各有特点。独立逆变器注重稳定性和可靠性,而并网逆变器则需要具备快速响应和精确控制的能力,以确保与电网的无缝连接。
独立逆变器的工作方式相对简单,主要依靠内部的控制算法来维持输出电压和频率的稳定。并网逆变器则需要具备更复杂的控制策略,包括锁相、并网控制以及电力调节等功能,以实现与电网的协调运行。
总体而言,独立逆变器和并网逆变器在控制策略上的差异主要体现在对电网状态的依赖程度以及实时性要求上。独立逆变器不考虑电网情况,而并网逆变器则需要实时监测电网状态,确保与电网的同步。
说明一下电机控制的逆变器是如何通过pwm技术调整输出三相交流电的频率和电压
一、复合型AC-AC电路
复合型AC-AC电路能够实现三相输出电压的幅值和频率的同时改变。这种电路在交流电机调速、变频器和其他需要调节电压和频率的应用中非常重要。
二、如何改变幅值和频率
1. 改变幅值:
幅值的改变通常通过脉冲宽度调制(PWM)技术实现。控制电路将输入信号转换为PWM信号,通过调整脉冲宽度来控制输出电压的幅值。具体操作是,控制电路接收输入信号,并将其转换为脉冲信号,随后通过改变脉冲宽度来调整输出电压的幅值。
2. 改变频率:
频率的改变则通常通过变频器实现。控制电路首先将输入电源转换为直流电源,然后将直流电源转换为频率可调的交流电源,以此来控制输出电压的频率。具体来说,控制电路接收到输入电源,并将其转换为直流电源,随后再将直流电源转换为频率可调的交流电源,从而实现输出电压频率的控制。
三、需要注意的问题
复合型AC-AC电路的控制电路设计复杂,需要精确的控制算法和电路设计。此外,电路在实际运行中可能会遇到噪声、温度等问题,因此在设计和使用时需要特别注意这些问题。
四、举例说明
以一种基于PWM和变频器的电路设计为例,可以说明如何实现三相输出电压幅值和频率的同时改变。该电路主要由PWM模块、直流-交流变换模块和变频器模块组成。
1. PWM模块:
PWM模块负责控制输出电压的幅值。它接收控制信号,并将输入电压转换为PWM信号。通过调整PWM信号的占空比,可以实现输出电压幅值的控制。
2. 直流-交流变换模块:
直流-交流变换模块负责将PWM信号转换为交流电压。它接收PWM信号和直流电源,并使用逆变器将直流电源转换为可控制的三相交流电压输出。
3. 变频器模块:
变频器模块负责控制输出电压的频率。它接收控制信号,并将输入电源转换为频率可调的交流电源。变频器模块可以采用多种技术实现,如电压-频率(V/F)控制技术或矢量控制技术。
通过上述三个模块的协同工作,可以实现三相输出电压幅值和频率的同时改变。例如,通过增加PWM信号的占空比来增加输出电压的幅值,或者通过改变变频器的频率来改变输出电压的频率。
技术分享|三相并网逆变器PQ控制算法控制解析
在储能系统并网应用中,功率调节性能对参与电网管理至关重要。PQ控制算法因其高效性成为主流选择,其核心在于依据电网指令精确调节有功和无功功率输出。该算法首先计算d轴电流和q轴电流的参考值,再通过PI控制实现对功率的精准控制。
实验系统采用研旭的功率模块YXPHM-TP210b、SP2000控制器及YXPVS5K光伏电池阵列模拟器,构建了完整的储能逆变PQ控制系统。Simulink软件用于算法开发,YX-View2000上位机软件实时监控系统运行。
算法模型基于Id和Iq作为电网电流的d轴分量和q轴分量,Ugd和Ugq为电网电压的对应分量。通过公式计算有功和无功功率,当电网电压定向至d轴时,可简化计算过程。依据公式求得dq轴电流参考值,构建Simulink计算模型实现算法逻辑。
将PQ控制模块引入DC-AC模型,替换原直流电压PI控制模块,形成包含PQ有功无功功率控制的逆变系统。实验中,采用直流电源作为储能单元,设定输出电压为600V,电流过流限制15A。通过SP2000控制器运行Simulink模型,上位机View2000监控系统状态,实时显示电压电流波形。
实验结果表明,通过上位机界面设置功率输出,逆变器输出功率可从2000W调整至5000W。功率稳定在5000W时,直流电源输出电流与功率保持同步,验证了PQ控制算法的有效性和精准性。
储能系统防逆、需量和防止超过变压器容量,从控制角度都有啥区别?
在储能系统的控制中,防逆、需量管理和防止超过变压器容量是三个不同的功能,它们各自有不同的目标和实现方式:
1. 防逆
定义: 防逆是指防止电流反向流动,确保电能按照预定的方向流动。
目的: 主要是为了保护设备和系统的安全运行,避免因电流反向流动导致的设备损坏或系统故障。
实现方式:
逆变器控制: 逆变器应具有防逆功能,当检测到电流反向时,自动切断电路或调整输出。
电流传感器: 通过安装电流传感器实时监测电流方向,一旦发现反向电流立即采取措施。
软件算法: 控制系统中嵌入防逆算法,实时分析电流数据并做出相应调整。
2. 需量管理
定义: 需量管理是指根据电网需求和储能系统的容量,合理分配和调节电能的使用,以优化系统性能和经济效益。
目的: 主要是为了平衡电网负荷,提高能源利用效率,减少不必要的能源浪费。
实现方式:
负荷预测: 通过历史数据分析和预测模型,提前预测电网的负荷需求。
动态调整: 根据实时负荷情况,动态调整储能系统的充放电策略。
优化算法: 使用先进的优化算法,如机器学习或人工智能,来优化储能系统的运行策略。
3. 防止超过变压器容量
定义: 防止超过变压器容量是指确保储能系统的充放电过程不超过变压器的最大承载能力,以避免变压器过载或损坏。
目的: 主要是为了保护变压器设备,确保其长期稳定运行,避免因过载导致的设备故障或安全事故。
实现方式:
容量监控: 实时监控变压器的负载情况,确保其工作在安全范围内。
限流措施: 当检测到负载接近或超过变压器容量时,采取限流措施,如降低充电功率或暂停充电。
报警系统: 设置报警系统,当变压器负载过高时发出警报,提醒操作人员采取措施。
综上所述,储能系统的防逆、需量管理和防止超过变压器容量在控制角度上各有侧重,但都是为了确保系统的安全、高效运行。通过合理的控制策略和技术手段,可以实现这些功能的有效管理和优化。
如何从零自学逆变器控制(一)
如何从零开始自学逆变器控制
要掌握逆变器控制,首先需了解理论知识。掌握功率拓扑原理,包括Buck、Boost电路和全桥逆变电路,理解驱动和PWM占空比计算,虽然软件部分可以依赖硬件提供的系数,但《数字信号处理》和《自动控制原理》是基础课程。数字信号处理涉及拉氏变换和离散化,逆变器中的滤波器主要是一阶低通和陷波器。自动控制原理则讲传递函数,重点理解PID中的PI控制,推荐使用串联型,编写程序时需通过Z变换和差分方程。
获取资源是关键。选择TI公司的C2000系列DSP,例如TMS320F280049,从TI官网下载相关资料,如用户手册和SDK库。开始时可从控制一个IO口入手,再逐步深入。C2000Ware库提供例程,旧型号可能需要注册。
学习路径包括理解逆变器的开发套件,如Solar目录下的单相逆变器项目,从原理图和源码入手,同时参考官方的指导文档。掌握基本的单极性或双极性控制,理解控制模式和功率拓扑。
在CCS开发环境中,导入并调试例程,如voltagesourceinvlcfltr.c中的中断程序,理解PI控制参数设计。可以从TI的库中找到逆变器常用的算法,如电压源逆变器的控制。
参数采样是逆变器核心,包括直流电压、交流电压和电流。例如,通过电阻分压法采样直流电压,计算公式预先设定系数简化计算。交流电压采样则用差分电路,计算出合适的系数转换采样值。
电流采样可通过电阻或霍尔传感器,这里以电阻为例,计算电流值的公式同样涉及系数预设。
逆变控制涉及相位生成,如使用斜坡信号乘以正弦函数,以及电压和电流环路的双环路控制。PI控制中,串联型更易于调试,注意中断函数中的函数调用效率。
最后,持续学习和实践,如PID控制的理解,可以参考相关文章深入探讨。通过理论与实践结合,逐步掌握逆变器控制的各个方面。
逆变电源的算法都有哪些?简单介绍6种。
逆变电源的算法都有哪些?简单介绍6种
引言:
逆变电源是一种将直流电转换为交流电的装置,广泛应用于各个领域,如电力系统、工业控制、通信设备等。逆变电源的算法是实现其功能的核心部分,本文将介绍逆变电源常用的6种算法,帮助读者更好地了解逆变电源的工作原理和应用。
一、脉宽调制(PWM)算法
脉宽调制是逆变电源中最常用的算法之一。它通过调整输出信号的脉冲宽度来控制输出电压的大小。PWM算法具有响应速度快、控制精度高的特点,广泛应用于逆变电源的控制电路中。
二、多电平逆变算法
多电平逆变算法是一种通过增加逆变器输出电平的方式来提高输出电压质量的算法。它通过在逆变器输出端增加多个电平,使得输出电压的波形更加接近正弦波,减小谐波含量,提高电压质量。
三、空间矢量调制(SVM)算法
空间矢量调制是一种通过调整逆变器输出电压的幅值和相位来控制输出电压的算法。SVM算法通过将输出电压表示为空间矢量的形式,实现对输出电压的精确控制。它具有控制精度高、输出电压质量好的特点,被广泛应用于高性能逆变电源中。
四、谐波消除算法
谐波消除算法是一种通过调整逆变器输出电压的谐波分量来减小谐波含量的算法。它通过分析逆变器输出电压的谐波成分,并采取相应的控制策略来消除谐波,提高输出电压的质量。
五、模型预测控制(MPC)算法
模型预测控制是一种基于系统模型的控制算法,逆变电源中也有应用。MPC算法通过建立逆变电源的数学模型,并根据模型预测的结果进行控制决策,实现对输出电压的精确控制。它具有控制精度高、适应性强的特点,适用于复杂的逆变电源控制系统。
六、神经网络控制算法
神经网络控制算法是一种基于人工神经网络的控制方法,逆变电源中也有应用。神经网络控制算法通过训练神经网络模型,并根据网络的输出结果进行控制决策,实现对输出电压的精确控制。它具有学习能力强、适应性好的特点,适用于复杂的逆变电源控制系统。
结论:
逆变电源的算法多种多样,每种算法都有其适用的场景和特点。脉宽调制、多电平逆变、空间矢量调制、谐波消除、模型预测控制和神经网络控制是常见的逆变电源算法。了解这些算法的原理和特点,有助于读者更好地理解逆变电源的工作原理,并在实际应用中选择合适的算法以满足需求。
谁能说下光伏逆变器的MPPT技术?
MPPT是光伏发电系统中的一项核心技术,它在光伏逆变器中扮演着关键角色。MPPT全称为Maximum Power Point Tracking,即最大功率点跟踪技术。这项技术的主要功能是确保光伏逆变器能够实时监测太阳能电池板输出的最大功率点,并调整自身的工作状态,以实现高效能量转换。通过MPPT技术,光伏逆变器可以不断调整其工作电压和电流,以匹配太阳能电池板的输出特性,从而最大限度地提高太阳能电池板的电力输出。
太阳能电池板在工作时会受到温度、光照强度和负载变化等因素的影响,导致其输出功率发生变化。MPPT技术通过不断调整光伏逆变器的工作状态,使太阳能电池板始终处于最佳工作状态,确保系统输出最大功率。在实际应用中,MPPT技术能够有效提高光伏系统的发电效率,降低电力损失,提升经济效益。
MPPT技术主要分为两种类型:电感式和电容式。电感式MPPT技术通过调节太阳能电池板与负载之间的电压和电流来实现最大功率点跟踪,而电容式MPPT技术则是通过调节太阳能电池板与负载之间的电压和功率来实现最大功率点跟踪。这两种技术各有优缺点,需要根据实际情况选择合适的MPPT技术。
随着光伏技术的不断发展,MPPT技术也在不断进步。目前,光伏逆变器普遍采用先进的智能控制算法,能够实时监测太阳能电池板的输出特性,精确跟踪最大功率点。这些先进的算法可以适应各种复杂的环境条件,确保光伏系统在各种情况下都能实现高效发电。
总之,MPPT技术是光伏逆变器中不可或缺的核心技术,它在提高光伏系统的发电效率、降低成本、提升经济效益方面发挥着重要作用。随着光伏技术的不断发展,MPPT技术也将持续进步,为光伏发电系统带来更多的创新和发展机遇。
太阳能发电板使用方法
一、控制器的配置算法控制器的电压跟逆变器电压要相同,跟太阳能板连接后的输出电压等级相同,然后就算电流;
电流的大小根据太阳能发电板的功率决定的,比如四个200W的太阳能板,不管怎么样接法,总功率是800W,假设连接后输出电压等级为24V,那电流就是800/24=33A,也就是要大于33A的充放电控制器,我们就可以选择24V/40A的充放电控制器;
强调:控制器的大小是由太阳能发电板决定的;也就是充放电控制器的功率(电压*电流)要大于或等于所有发电板的总功率;
二、逆变器的算法逆变器的大小是由负载决定的,也就是由后面所带的设备来决定的,但设备分为感性负载和阻性负载,感性负载是指电机,风机,水泵,空调等开机会动的设备,这些设备开机时会有4到7倍的冲击电流(变频启动的除外,变频启动的无影响),算这些设备时,至少要按4倍的功率来计算;阻性负载是指那些开启时没有或很小的冲击电流的,如电灯,电脑,显示器等;这些设备就按原功率计算就可以了;
逆变器的选择要至少比后端所带的设备放大后的最大功率还要大;比如带一个1KW的水泵和一台1KW的电脑,那水泵会有4倍以上的冲击,电脑不会,那就要最大功率有4+1=5KW,所以逆变器至少要6KW以上的;
三、电池的算法
电池的选择也是取决于后面带的设备功率大小和需要电池供电时间的长短;
功率是后面带的所有设备的功率总和,但不要计冲击,因为开机冲击只是很短的时间,对电池影响不大;
公式为:(总功率/直流电压)*时间=单节电池的容量;电池节数=直流电压/单节电池电压;
举例子:负载有一台1KW电机,一台1KW电脑,要应急供电2小时,那总功率就是2000W,如果直流电压是24V,单节电池电压是12V;
电池容量=(2000/24)*2=166,也就是要用180AH/12V的电池了;电池节数=24V/12V=2节;所以这个案子就要用180AH/12V的电池2节;
四、太阳能电池板的配置:
方案一:太阳能电池板只是给电池充电,这个就决定于电池的容量和电压了;
(举例子一:用的是100AH/12V的电池一节;按一天5个小时的足太阳计算,就必须要20A的充电电流,20A*12V=240W;也就是太阳能板必须要大于或等于12V/240W的太阳能电池板;)
方案二:用户希望在太阳能足够时,能直接太阳能电池板直接经过逆变器输出,那就必须太阳能电池板的功率大于等于负载功率;直流电压等级范围跟逆变器输入的直流电压等级相各个地方
高频逆变器的工作原理 高频逆变器和低频的区别
高频逆变器的工作原理基于SPWM(正弦脉宽调制)技术,通过这种驱动波形来控制IGBT或MOSFET的开关,进而实现直流到交流的转换。具体而言,通过精密的控制算法生成一系列宽度按正弦规律变化的脉冲,这些脉冲能够逼近正弦波,从而实现对交流输出波形的精确控制。
相比之下,低频逆变器的最大优点在于其稳定性高,能够在各种负载条件下保持稳定的输出电压和频率。而高频逆变器则以其体积小巧和效率高著称,其高频开关技术使得逆变器在相同功率的情况下,体积可以大大减小,同时减少了能量损耗,提高了整体效率。
在实际应用中,高频逆变器广泛应用于如通信基站、医疗设备、工业自动化等领域,因其体积小、重量轻、响应速度快等优势,使得它能够在空间有限的环境中提供高效稳定的电源转换。
低频逆变器则更多应用于要求稳定输出的场合,如数据中心、精密仪器等。在这些场合,逆变器的稳定性至关重要,低频逆变器凭借其出色的稳定性能,能够确保电源的连续性和可靠性。
总结来说,高频逆变器和低频逆变器各有千秋。选择哪种类型的逆变器,需要根据具体的应用场景和需求来决定。对于空间有限或对体积有严格要求的应用,高频逆变器是理想选择;而对于需要稳定输出的应用,低频逆变器则更为合适。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467