Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

并网逆变器模型

发布时间:2025-04-04 20:59:59 人气:



三相逆变器的simulink仿真中电压电流双闭环控制参数到底如

在三相逆变器的Simulink仿真中,电压电流双闭环控制参数的设计与验证是关键步骤。首先,通过构建三相并网逆变器模型,确保数学模型能够与物理模型的输出相吻合,这为控制器设计提供了坚实基础。模型中通过加入电网电压前馈和解耦项,实现了对d、q分量的独立控制,使得在输入信号变化时,输出量不受影响,有效实现了解耦控制。

在控制器设计方面,采用PI控制器进行电流环控制。通过对比系统模型与典型二阶系统的特性,发现控制器参数设计时需考虑附加闭环零点对动态性能的影响。基于此,设计控制器参数以满足系统动态性能要求,如峰值时间提前、超调量增加等。同时,通过伯德图分析,直观验证了控制器设计的合理性。

针对调制器模型,详细讨论了开关过程中的调制器增益与控制延时。通过分析调制器输出特性,解释了其零阶保持器特性,以及控制周期内的延时效应。此外,系统模型中加入调制器增益与控制延时,确保了仿真模型的完整性与准确性。

总结而言,电压电流双闭环控制参数的设计需综合考虑数学模型与物理模型的匹配、解耦控制的实现、控制器动态性能的优化以及调制器特性的影响。通过上述步骤,能够有效设计出满足性能需求的控制器,确保三相逆变器在Simulink仿真中的稳定运行与高效控制。

PLECS应用范例(77):三相T型逆变器(Three-Phase T-Type Inverter)

本演示介绍了一种三相T型逆变器,用于部署Wolfspeed SiC MOSFET的并网应用。T型逆变器类似于三电平中性点箝位(NPC)逆变器,因为它在0V时增加了额外的输出电压电平,从而比标准的两电平逆变器提供了更好的谐波性能。T型逆变器的优点是减少了部分计数和减少了外部开关器件的传导损耗,但缺点是阻断电压降低。演示模型显示了一个额定值为22 kVA的T型逆变器示例,该逆变器将800 V直流母线转换为三相60 Hz、480 V(均方根)配电,用于工业应用。

T型逆变器的热性能受到设备选择、控制器参数和调制方法的影响。在演示模型中,所有12个器件均配置为演示不同Wolfspeed SiC MOSFET的热损耗性能。每个半导体器件被建模为具有定制掩模配置的子系统,每个都有自己的热模型。设备断言(Device Assertions)会检查设备在安全操作区域内的运行情况,并生成警告。

控制器实现的高级示意图如图4所示。图5所示的去耦合同步参考框架电流控制器用于为调制器生成dq电压参考,调制器则将变频器的输出电流调节到所需的设定点。控制器包括直接电流和正交电流的PI调节器,电压参考的相位角由一个简单的同步参考框架锁相环(PLL)测量得到。使用PLL的角度输出,电压参考值被转换为三相电压参考值,并送入一个调制器。调制器的实现可以采用不同的调制方法,包括经典的正弦脉宽调制(SPWM)、空间矢量PWM(SVPWM)、三次谐波注入PWM(THIPWM)、三次谐波零序PWM(THZSPWM)和不连续PWM(DPWM)。

使用提供的模型运行仿真,可以观察到每个相支路的PWM信号、输出交流电流、设备S11和S12的信号以及系统的计算损耗。参数扫描是确定设计决策如何在一系列操作条件下影响变换器性能的有效方法。通过操纵调制方案、开关频率、停滞时间、控制器设定点和控制器增益,可以试验控制器设置。此外,还可以分析设备类型、并联设备的数量以及外部冷却或更大散热器的影响。所有这些设置都会影响损耗行为和系统效率。如果设备在安全操作区域外运行,模拟窗口的右下角将出现一个警告图标,以确定违反了哪些操作标准。

模型重点介绍了用于工业配电网应用的三相T型逆变器。通过简单的设备和控制器设计,突出了PLECS的热建模能力。此模型可用作研究控制器设计对其他拓扑效率影响的示例。

并网逆变器的VSG/PQ控制及其平滑切换方法

本文探讨并网逆变器的电压源型发电机(VSG)与功率因数控制(PQ)的平滑切换方法,针对逆变器在不同工作模式下的灵活控制需求。对于并网运行的逆变器,PQ控制因缺乏频率惯性和阻尼而难以为电网提供频率支撑,而VSG控制能增加系统频率惯性。在切换模式时,需确保切换过程对电能质量的影响最小。此外,PQ控制逆变器在离网运行时需转换至VSG控制以避免VSG过载。

为解决上述问题,提出了VSG和PQ控制在并网条件下平滑切换的策略。VSG控制通过电路模拟器模型实现输出变量电流环指令值与PQ控制方式的统一。通过控制切换前后的电流环指令值和调制波相位,实现两种控制方式的平滑过渡。在具体切换过程中,针对幅度、频率和相位的同步控制,通过反推求解PI控制器的积分初值,确保切换瞬间调制波的连续性,避免相位突变引起的影响。

在VSG到PQ的切换中,采用采样切换前VSG实际输出功率作为PQ控制的目标功率参考值,保证幅度一致性;通过反推求解PI控制器的积分值,确保切换瞬间电流指令值和调制波的平滑切换。对于PQ到VSG的切换,需满足电流指令值与调制相位的同步,通过切换前的电流环指令值作为VSG控制的初始值,实现相位的平滑过渡,并通过计算得到切换时刻VSG控制的电动势,确保切换后的运行过程中电流指令值的稳定。

综上所述,本文提出的方法实现了VSG与PQ控制的平滑切换,有效减小了控制方式转换对电能质量的影响,提高了并网逆变器在不同工作状态下的稳定性和效率。此研究为逆变器控制策略的优化提供了理论基础和实践指导。

基于准比例谐振QPR_并网模式微电网逆变器VSG控制_SIMULINK_仿真模型搭建

本文详细阐述了采用准比例谐振(QPR)方法实现并网VSG逆变器控制的理论与实践。控制目标明确,旨在确保并网输出电流THD低于3%,并确保输出功率能够准确无静差地跟踪功率参考值。对这一控制策略感兴趣的读者,论文“基于VSG的储能系统并网逆变器建模与参数整定方法”提供了一致的理论依据,发表于《电力自动化设备》2018年第38卷第8期,由胡文强等作者撰写。

控制策略核心为VSG功率外环+虚拟阻抗+QPR内环,具体而言,VSG功率外环产生三相参考电压信号,虚拟阻抗控制基于电磁方程转换得到电感电流参考值,而QPR准比例谐振控制器则精准跟踪参考电流,输出三相调制波信号。

为了验证仿真模型的正确性,构建了整体控制模型,包含虚拟阻抗与QPR准比例谐振控制。仿真结果显示,电流内环设计合理,通过Bode图验证QPR控制器在50Hz频率点实现了无静差跟踪,证明了控制器设计的合理性。

仿真模型还展示了并网输出功率的无静差跟踪性能。进一步,通过观察输出电压电流以及电流THD波形,确认THD值仅为0.52%,满足并网谐波指标要求。

综上所述,基于准比例谐振控制器(QPR)的VSG模型能够有效实现并网效果,确保并网输出电流质量、功率跟踪精度以及电压电流的谐波指标,具有较高的实用价值与工程应用潜力。

PLECS 应用示例(77):三相T型逆变器(Three-Phase T-Type Inverter)

本文展示了一款用于并网应用的三相T型逆变器,采用Wolfspeed SiC MOSFET。图1显示了电路图,演示了如何选择器件、控制器参数和调制方法以影响逆变器的热性能。模型研究了逆变器在不同运行条件下的性能,确保系统安全高效运行。

T型逆变器类似于三电平中点箝位(NPC)逆变器,提供改进的谐波性能,同时减少零件数量和外部开关器件的导通损耗。本示例展示了一个22 kVA额定功率的T型逆变器,将800 V直流母线转换为三相60 Hz、480 V(线路,rms)配电。

模型配置了三种不同开关类型的SiC MOSFET,分别具有不同的额定电压、额定电流和RdsOn值,用于评估其热性能。每个器件都被建模为具有定制掩模配置的子系统,包括MOSFET和体二极管,以及热模型。组件掩模参数包括导通电阻和体二极管正向电压,以确定电流流过路径,影响开关损耗。

控制器采用解耦的同步参考系电流控制器,用于生成dq电压参考,通过独立的PI调节器将逆变器输出电流调节至设定点。PI控制器包括去耦前馈项,使用简单的同步参考帧锁相环(PLL)测量电压参考相位角,然后转换为三相电压参考,馈送到调制器,用户可选择不同的调制方案。

调制器组件实现不同的调制方法,如SPWM、SVPWM、THIPWM、THZSPWM和DPWM,以比较其对半导体损耗的影响。例如,DPWM在单位功率因数下的损耗最低,但当功率因数角接近0.5时,SPWM和SVPWM方法显示出较高的损耗。

通过操纵控制器设置、调制方案、开关频率、死区时间、控制器增益以及分析设备类型、并联设备数量和外部冷却或散热器的影响,可以试验控制器设置并分析系统级电气规格。参数扫描是确定设计决策如何在一系列操作条件下影响转换器性能的有效方法。

该模型突出显示了PLECS的热建模能力,并可以作为研究控制器设计对其他拓扑结构效率影响的例子。

并网逆变器控制策略主要有几种?各自的特点是什么?

1. 本文研究了并网逆变器在电压源型发电机(VSG)和功率因数(PQ)控制模式间的平滑切换方法。

2. 分析了逆变器在不同控制模式下的工作特点,指出PQ控制缺乏对电网频率的支撑作用,而VSG控制能增加系统频率惯性。

3. 提出了在并网条件下实现VSG与PQ控制平滑切换的策略,通过电路模拟器模型整合两种控制方式的输出变量。

4. 控制切换前后电流环指令值和调制波相位,确保两种控制方式的无缝过渡,避免相位突变造成的影响。

5. 在从VSG到PQ控制切换时,利用实际输出功率作为参考值,保持幅度一致性,并通过PI控制器积分值实现平滑切换。

6. 从PQ到VSG切换时,保证电流指令值与调制相位的同步过渡,通过计算得到切换时的VSG控制电动势,确保稳定运行。

7. 综上所述,本研究提出的方法有效减少了控制切换对电能质量的影响,提升了并网逆变器的稳定性和效率。

8. 此研究成果为逆变器控制策略的优化提供了理论依据和实践指导。

基于准PR控制的LCL三相并网逆变器仿真模型(Simulink仿真实现)

基于准PR控制的LCL三相并网逆变器仿真模型,利用Simulink进行实现。该逆变器在电力电子领域具有高效性、高功率密度和可编程性强的特性,广泛应用于可再生能源、电动汽车等领域。

构建电力系统模型时,需包含直流电源、LCL三相并网逆变器、输出滤波器和电网。在逆变器中,需建立准PR控制器模型,实现对输出电压和电流的控制。模型建立需考虑电感值、电容值、阻值等参数的精确性,仿真中应实时监控和记录数据,分析和验证结果,并对仿真结果进行优化和调整,以满足实际应用需求。

运行结果方面,通过Simulink仿真,模型运行稳定,输出符合预期,验证了准PR控制在LCL三相并网逆变器中的有效性。

参考文献中提及的相关研究,有助于理解准PR控制在LCL三相并网逆变器中的应用及分析方法。如有引用或借鉴,会注明出处,并保持内容的准确性。

具体Simulink仿真实现步骤及详细讲解将在后续文档中提供,以满足对准PR控制在LCL三相并网逆变器仿真模型构建和运行细节的深入理解需求。

技术分享|三相并网逆变器PQ控制算法控制解析

在储能系统并网应用中,功率调节性能对参与电网管理至关重要。PQ控制算法因其高效性成为主流选择,其核心在于依据电网指令精确调节有功和无功功率输出。该算法首先计算d轴电流和q轴电流的参考值,再通过PI控制实现对功率的精准控制。

实验系统采用研旭的功率模块YXPHM-TP210b、SP2000控制器及YXPVS5K光伏电池阵列模拟器,构建了完整的储能逆变PQ控制系统。Simulink软件用于算法开发,YX-View2000上位机软件实时监控系统运行。

算法模型基于Id和Iq作为电网电流的d轴分量和q轴分量,Ugd和Ugq为电网电压的对应分量。通过公式计算有功和无功功率,当电网电压定向至d轴时,可简化计算过程。依据公式求得dq轴电流参考值,构建Simulink计算模型实现算法逻辑。

将PQ控制模块引入DC-AC模型,替换原直流电压PI控制模块,形成包含PQ有功无功功率控制的逆变系统。实验中,采用直流电源作为储能单元,设定输出电压为600V,电流过流限制15A。通过SP2000控制器运行Simulink模型,上位机View2000监控系统状态,实时显示电压电流波形。

实验结果表明,通过上位机界面设置功率输出,逆变器输出功率可从2000W调整至5000W。功率稳定在5000W时,直流电源输出电流与功率保持同步,验证了PQ控制算法的有效性和精准性。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言