Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器定时电路

发布时间:2025-04-02 04:10:23 人气:



方波和PWM电压型逆变器比较

1. PWM方波是一种特殊的PWM信号,其波形近似于方波。在PWM信号中,高电平和低电平的持续时间不同,这种时间上的不同被称为占空比。占空比越大,高电平持续的时间越长,低电平持续的时间越短,PWM方波的波形越接近于方波。

2. PWM方波的频率和占空比可以通过主从定时器配置实现。主从定时器可以设置主从关系,例如:可以用主定时器控制从定时器,而从定时器还可以控制从从定时器。通过配置主从定时器,可以实现任意相位,任意占空比的PWM方波。

3. PWM方波的频率、占空比和分辨率是相关的。频率是指单位时间内产生的脉冲数量,占空比是指一个脉冲中高电平占整个脉冲的份额,分辨率是指占空比的最小变化量。通过改变PWM方波的频率、占空比和分辨率,可以实现不同的控制效果。

4. PWM方波的输出需要微处理器的数字输出和模拟电路的控制。PWM方波的输出原理是利用微处理器的数字输出来对模拟电路进行控制,通过对脉冲宽度的控制来实现PWM方波的输出。

5. PWM方波的控制不仅限于FPGA,还可以使用STM32等微控制器实现。使用FPGA输出PWM方波需要设计相应的Verilog或VHDL代码,而使用STM32等微控制器输出PWM方波则需要配置相应的定时器和寄存器。

单结晶体管的应用介绍有哪些?

单结晶体管因其具有大脉冲电流能力和简单电路的特点,在多种开关应用领域,以及构成定时电路和触发SCR等方面,获得了广泛的应用。

首先,在开关应用中,单结晶体管以其电流能力的优势,可以快速地控制电路的接通和断开,实现高效的开关功能。例如,在电子设备的电源管理电路中,利用单结晶体管构建的开关电路能够快速响应,有效控制电源的开关状态,提高电源管理的效率和稳定性。

其次,在构成定时电路方面,单结晶体管的独特特性使得它在许多场合下成为理想的定时元件。通过适当调整单结晶体管的参数,可以精确地控制电路的延时时间,从而实现定时功能。在自动控制系统、定时器、计时器等设备中,单结晶体管作为核心元件,能够满足不同应用场合对定时精度和响应速度的要求。

此外,在触发SCR(Silicon Controlled Rectifier,可控硅)的应用中,单结晶体管作为触发器,能够精确控制可控硅的导通和关断。在电力电子技术领域,可控硅广泛应用于电压调节、电流控制、逆变器等设备中。通过单结晶体管的触发作用,可以实现对可控硅的精确控制,提高电力电子设备的性能和可靠性。

综上所述,单结晶体管凭借其大脉冲电流能力和简单电路结构,广泛应用于开关控制、定时电路、触发SCR等不同领域。通过合理利用单结晶体管的特性,可以实现高效、精确、稳定的电路控制,满足各种电子设备和电力电子设备对性能和功能的需求。

模拟芯片SG3525:PWM驱动设计

SG3525是一款广泛应用的PWM控制器,由多家制造商生产,如ST Microelectronics、Fairchild Semiconductors、On Semiconductors等。它广泛用于DC-DC转换器、DC-AC逆变器、家用UPS系统、太阳能逆变器、电源、电池充电器等众多应用。在进行详细描述和应用前,我们先来看看其框图和引脚布局。

SG3525的引脚介绍如下:

1. 引脚1(反相输入)和2(非反相输入)是板载误差放大器的输入,实现对PWM关联的“反馈”的占空比的增加或减少。

2. Pin1和Pin2用于负反馈,实现输出的稳定。当INV IN和NINV IN电压相等时,SG3525产生的占空比不再变化。通过调整电路输出到INV IN,NINV IN接到VREF,可实现INV IN跟随VREF。通过调整分压比例实现对输出的稳压控制。

3. Pin5连接电容CT再接地,Pin6连接电阻RT再接地,Pin7和Pin5之间接电阻RD用于电容CT放电,决定死区时间。PWM的频率取决于定时电容和定时电阻。定时电容(CT)连接在引脚5和地之间。定时电阻(RT)连接在引脚6和地之间。引脚5和7(RD)之间的电阻决定了死区时间(也会稍微影响频率)。频率与RT、CT和RD的关系如下:

4. 频率公式:RT和RD以Ω为单位,CT以F为单位,f以Hz为单位。RD的典型值在10Ω至47Ω范围内。可用值的范围(由SG3525制造商指定)为0Ω至500Ω。RT必须在2kΩ至150kΩ范围内。CT必须在1nF(代码102)至0.2μF(代码224)范围内。振荡器频率必须在100Hz至400kHz范围内。

5. PIN8是软起动功能,连接在引脚8和地之间的电容提供软启动功能。电容越大,软启动时间越长。这意味着从0%占空比变为所需占空比或最大占空比所需的时间更长。通过调整分压比例实现对输出的稳压控制。

6. PIN16是电压参考部分的输出,SG3525包含一个额定电压为+5.1V的内部电压参考模块,经过调整可提供±1%的精度。此参考通常用于向误差放大器提供参考电压,以设置反馈参考电压。它可以直接连接到其中一个输入,也可以使用分压器进一步降低电压。

7. PIN15是VCC芯片供电引脚,使SG3525运行。VCC必须在8V至35V范围内。SG3525具有欠压锁定电路,当VCC低于8V时,该电路可阻止运行,从而防止错误操作或故障。

8. PIN13是VC驱动电压,引脚13是SG3525驱动器级的电源电压,连接到输出图腾柱级中的NPN晶体管的集电极。因此得名VC。VC必须在4.5V至35V的范围内。输出驱动电压将比VC低一个晶体管的电压降。因此,在驱动功率MOSFET时,VC应在9V至18V的范围内(因为大多数功率MOSFET需要至少8V才能完全导通,并且最大VGS击穿电压为20V)。对于驱动逻辑电平MOSFET,可以使用较低的VC。必须小心确保不超过MOSFET的最大VGS击穿电压。同样,当SG3525输出馈送到另一个驱动器或IGBT时,必须相应地选择VC,同时牢记馈送或驱动设备所需的电压。当VCC低于20V时,通常将VC连接到VCC。

9. PIN12是接地连接,应连接到电路接地。它必须与其驱动的设备共用接地。

10. PIN11和PIN14是输出,驱动信号将从这些输出中获取。它们是SG3525内部驱动器级的输出,可用于直接驱动MOSFET和IGBT。它们的连续电流额定值为100mA,峰值额定值为500mA。当需要更大的电流或更好的驱动时,应使用使用分立晶体管的进一步驱动器级或专用驱动器级。同样,在驱动导致SG3525功率耗散和发热过多的设备时,应使用驱动器级。当以桥式配置驱动MOSFET时,必须使用高低侧驱动器或栅极驱动变压器,因为SG3525仅设计用于低侧驱动。

11. PIN10是高电平时快速关断,通常接低电平。引脚10为关机。当此引脚为低电平时,PWM启用。当此引脚为高电平时,PWM锁存器立即设置。这为输出提供了最快的关机信号。同时,软启动电容器通过150μA电流源放电。关闭SG3525的另一种方法是将引脚8或引脚9拉低。但是,这不如使用关机引脚那么快。因此,当需要快速关机时,必须向引脚10施加高信号。此引脚不应悬空,因为它可能会拾取噪声并导致问题。因此,此引脚通常通过下拉电阻保持在低电平。

12. PIN9为补偿,与PIN1一起用于补偿反馈信号。引脚9为补偿,可与引脚1配合使用,提供反馈补偿。

在了解了每个引脚的功能后,我们来设计一个实际应用电路。为了设计一个以50kHz运行的电路,驱动MOSFET(采用推挽配置),该MOSFET驱动铁氧体磁芯,然后升压高频交流电,然后整流和滤波,以产生290V稳压输出直流电,可用于运行一个或多个CFL。电路设计包含以下参数和步骤:

1. 电源电压已提供,并已接地。VC已连接到VCC。在电源引脚上添加了一个大容量电容器和一个去耦电容器。去耦电容器(0.1μF)应尽可能靠近SG3525。始终在所有设计中使用它。也不要省略大容量电容器,尽管您可以使用较小的值。

2. 引脚5、6和7提供了死区时间。在引脚6和地之间连接RT,在引脚5和地之间连接CT。RD=22Ω,CT=1nF(代码:102),RT=15kΩ。这给出了振荡器频率:由于振荡器频率为94.6kHz,开关频率为0.5*94.6kHz=47.3kHz,这足够接近我们的目标频率50kHz。如果需要50kHz的精度,可以使用电位器(可变电阻器)与RT串联并调整电位器,或者使用电位器(可变电阻器)作为RT,尽管我更喜欢第一种方法,因为它允许微调频率。

3. 引脚8提供了一个小型软启动电容,避免使用过大的软启动,因为使用CFL时,占空比缓慢增加(因此电压缓慢增加)会导致问题。

4. 引脚10通过上拉电阻上拉至VREF。因此,PWM被禁用并且不运行。但是,当开关打开时,引脚10现在处于接地状态,因此PWM被启用。我们利用了SG3525关机选项(通过引脚10),开关就像一个开/关开关。

5. 引脚2连接至VREF,因此电位为+5.1V(±1%)。转换器的输出通过电阻为56kΩ和1kΩ的分压器连接至引脚1。电压比为57:1。在反馈“平衡”时,引脚1处的电压为5.1V,这也是误差放大器的目标-调整占空比以调整引脚1处的电压,使其等于引脚2处的电压。因此,当引脚1处的电压为5.1V时,输出电压为5.1V*57=290.7V,这足够接近我们的290V目标。如果需要更高的精度,可以将其中一个电阻器替换为电位器或与电位器串联,并调整电位器以提供所需的读数。

6. 引脚1和9之间的电阻和电容的并联组合提供反馈补偿。反馈补偿是一个大话题,这里不详细讨论。

7. 引脚11和14驱动MOSFET。栅极上串联有电阻,用于限制栅极电流。栅极至源极的电阻可确保MOSFET不会意外开启。

总之,参考《EDA设计智汇馆高手速成系列_SABER电路仿真及开关电源设计》,也有SG3525的Saber仿真实例。搬运链接:Using the SG3525 PWM Controller - Explanation and Example: Circuit Diagram / Schematic of Push-Pull Converter

高级控制定时器(TIM1)可以被看成是分配到6个通道的三相PWM发生器(STM32)

STM32的高级定时器与普通定时器的四个通道基本一致,它们都包括CH1, CH2, CH3, CH4。高级定时器的独特之处在于每个通道CH1, CH2, CH3都配备了一个反向端CH1N, CH2N, CH3N。通过配置寄存器,反向端能够实现互补输出、反向输出或选择性端口输出等功能。虽然表面上看像是增加了六个通道,但实际上依然是处理三路数据,只是通过额外的逻辑电路实现了更多的功能。

脉宽调制(PWM)技术在开关电路中非常常见,尤其是在需要调制三相交流电的应用中。STM32高级定时器的六个通道可以灵活配置以生成三相交流电,这为逆变器、伺服电机、步进电机驱动等应用提供了广泛的适用性。通过精确的死区控制,可以确保电路的稳定性和可靠性。

高级控制定时器TIM1可以被视作一个能够产生三相PWM信号的设备,它通过六个通道分别实现不同的功能,例如互补输出、反向输出和选择性输出。这种配置不仅提高了系统的灵活性,还增强了系统的控制精度和可靠性。

STM32高级定时器的这种设计使得它能够满足多种复杂应用的需求,特别是在电机控制、电源管理和信号处理等领域。通过适当的配置和参数调整,可以实现高效的能源管理、精确的速度控制以及稳定的信号传输。

值得注意的是,六个通道中的每个通道都可以独立配置,从而提供更多的设计灵活性。这种灵活性使得STM32高级定时器成为现代电子设备中不可或缺的组件,特别是在需要高效、精确控制的应用场景中。

SG3525逆变器稳压电路,

SG3525逆变器的引脚功能繁多,每个引脚在电路设计中扮演着不同的角色。引脚1,即Inv.input,是误差放大器的反向输入端,主要接收反馈信号。在闭环系统中,这一端连接反馈信号,而在开环系统中,它则与补偿信号输入端(引脚9)相连,形成跟随器结构。

引脚2为Noninv.input,是误差放大器的同向输入端。无论是在闭环系统还是开环系统中,这一端都连接着给定信号。根据实际需求,在该端与补偿信号输入端之间可以接入各种反馈网络,从而构成比例、比例积分和积分调节器。

引脚3的Sync功能是为振荡器提供外接同步信号输入,这使得系统能够与外部电路同步。引脚4的OSC.Output是振荡器的输出端,提供必要的振荡信号。

引脚5的CT是振荡器定时电容的接入点,而引脚6的RT则用于接入定时电阻。引脚7的Discharge端与引脚5之间外接放电电阻,构成放电回路,以确保系统稳定运行。

引脚8的Soft-Start用于接入软启动电容,该电容的值通常为5μF,有助于平滑启动过程。引脚9的Compensation是PWM比较器的补偿信号输入端,在此端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分调节器。

引脚10的Shutdown是外部关断信号输入端,当此端接收到高电平信号时,控制器的输出会被禁止,这一端通常与保护电路相连,以实现故障保护功能。

引脚11和引脚14分别作为输出端A和输出端B,是两路互补输出端。引脚12的Ground为信号地,引脚13的Vc用于接入输出级的偏置电压。引脚14与引脚11功能相同,也是互补输出端。最后,引脚15的Vcc用于接入偏置电源,而引脚16的Vref则作为基准电源输出端,可提供温度稳定性极好的基准电压。

以上是SG3525逆变器各个引脚的功能介绍。在实际应用中,电压反馈通常接到引脚1,作为反馈信号输入端,然后根据具体电路设计寻找相应的反馈支路。具体的稳压环路设计,每个电路都由不同的设计人员根据具体需求来实现,因此每套电路的设计都可能有所不同,无法进行具体分析。

普通逆变器如何修改纯正弦波

1. 首先,需要对普通逆变器进行改造以输出纯正弦波。可以通过将方波整流得到的脉动直流信号进行滤波处理,以平滑其输出。

2. 接着,使用555定时器电路产生一个800Hz的脉冲信号。这个信号将用于控制两块IC芯片(例如CD4105)交替轮换输出脉冲。

3. 每块IC芯片有8个输出脚,能够输出不同大小的大脉冲。两块IC芯片联合工作则提供16个脉冲。由于这些脉冲是由555定时器控制,因此脉冲频率为800Hz除以16,即50Hz。

4. 然后,利用16个脉冲的大小变化来控制两个场效应管(如IRF640或其他大功率型号)的导通率。在一个半周期间,一个场效应管导通,而在另一个半周期间,另一个场效应管导通。这样就能生成正弦波形。

5. 最后,将生成的正弦波通过一个220V的变压器进行耦合,以升高电压至220V。耦合后的220V 50Hz 正弦波输出,即可完成普通逆变器输出纯正弦波的修改。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言