发布时间:2025-03-25 07:10:20 人气:
双向PCS储能变流器(一)基于I型NPC三电平逆变器拓扑的单级式PCS MATLAB/Simulink仿真实现
在电网系统中,电力负荷周期性变化,峰谷差大,为满足高峰负荷需求,电网公司需投资大量输配电设备,导致设备利用率低,整体负荷率下降。分布式发电和智能电网的大规模应用推动了储能技术的发展,储能系统可平抑可再生能源发电并网功率波动,缓解高峰负荷需求,起到“削峰填谷”作用,维持微电网功率平衡,改善电能质量,提高电网设备利用率,减少电网建设投资,降低运营成本。能量转换系统(PCS),即储能变流器,作为储能载体与电网的接口装置,起着能量双向交换的重要作用。
PCS电路拓扑分为单级式和双级式两种。单级式PCS仅含有一个双向DC/AC变流器,电路拓扑结构和控制简单,效率较高,但储能单元容量选择不够灵活,电池需要串并联成高压大电流电池组后,才能接入直流母线。
双级式PCS拓扑相对于单级式拓扑多了一个前级的双向DC/DC变流器。双级式电路拓扑结构直流侧接入电池电压范围较宽,电池组配置更加灵活,但由于多了一个双向DC/DC环节,结构和控制系统较复杂,系统效率降低。
不管是单级式PCS还是双级式PCS,都需要双向DC/AC变流器。双向DC/AC变流器可以采用两电平或三电平变流器拓扑结构。相比于两电平变流器,三电平变流器具有以下优点:
(1)桥臂上单个功率开关管承受的电压仅为直流母线电压的一半,降低了器件耐压等级的要求,从技术和经济方面都是可实现的,同时避免了器件串联时的动态均压问题,保证了系统的稳定性和可靠性;
(2)在相同调制频率下,每个开关管的开关频率是两电平的一半,交流侧电流谐波含量低,直流电压纹波小,器件损耗和应力小,电磁干扰小,减小了旋转用电设备的振荡,提高了系统的性能。
下文展示了一个50kW双向单级式PCS的MATLAB/Simulink仿真案例,主电路原理如下图,双向DC/AC变流器采用I型二极管中点钳位(Neutral Point Clamped, NPC)三电平逆变器,实现DC/AC逆变并网和AC/DC整流能量双向流动的功能。
三相电网电压3AC380V,频率50Hz,直流电压DC800V,储能变流器开关频率10kHz。AC/DC变换时负载功率50kW,DC/AC变换时并网功率P=50kW,Q=25kVar。
电压外环采用PI控制器,PQ控制时计算dq电流参考值。电流内环采用PI控制器,dq电流解耦,电网电压前馈。采用三电平SVPWM空间矢量调制。含中点电位平衡控制。含锁相环(基于单同步旋转坐标系的锁相环SRF-PLL)。控制算法框图如下图。
0-0.5s储能变流器工作在整流AC/DC模式,控制整流输出电压为DC800V,直流负载50kW,单位功率因数运行。0.5-1s储能变流器工作在逆变并网DC/AC模式,采用有功功率无功功率PQ控制,P为50kW,Q为25kVar。仿真结果如下。
基于I型二极管中点钳位(Neutral Point Clamped, NPC)三电平逆变器的双向单级式PCS的MATLAB/Simulink仿真案例,实现了DC/AC逆变并网和AC/DC整流能量双向流动的功能,具备中点电位平衡功能,上电容电压与下电容电压稳态偏差在±5V以内,同时具有较低的电流畸变率,电流THD<1%。
三相锁相环PLL锁相原理及仿真验证
锁相环在光伏逆变器并网中有重要应用,负责测量电网信号相位,实现逆变器单位功率因数并网。
原理分析中,三相锁相环首先通过abc三相电压的dq0变换,将交流量转换至同步旋转坐标系下的分量,便于进行直流量控制。通过PI调节使得a相q轴分量为0,借助积分环节计算出d轴旋转角度。由于a相与d轴最终重合,此角度即为a相角度,图1展示了这一原理。
结合实际情况分析,若a相电压滞后d轴30°,a相电压q轴分量为负值。通过原理图,可得知经PI调节后输出正值,与电网角速度相减,得到小于电网角速度的w。积分后得到wt,反馈到派克变换中,使得dq坐标系旋转速度减慢。经过调节,最终d轴与电网电压同步旋转,此时q轴分量为0,电网电压与d轴保持同步,此时得到a相角度,锁相成功。
仿真验证中,在三相并网逆变器中验证三相锁相环,输出的正弦曲线与电网相位一致,验证锁相成功。
基于准比例谐振QPR_并网模式微电网逆变器VSG控制_SIMULINK_仿真模型搭建
本文详细阐述了采用准比例谐振(QPR)方法实现并网VSG逆变器控制的理论与实践。控制目标明确,旨在确保并网输出电流THD低于3%,并确保输出功率能够准确无静差地跟踪功率参考值。对这一控制策略感兴趣的读者,论文“基于VSG的储能系统并网逆变器建模与参数整定方法”提供了一致的理论依据,发表于《电力自动化设备》2018年第38卷第8期,由胡文强等作者撰写。
控制策略核心为VSG功率外环+虚拟阻抗+QPR内环,具体而言,VSG功率外环产生三相参考电压信号,虚拟阻抗控制基于电磁方程转换得到电感电流参考值,而QPR准比例谐振控制器则精准跟踪参考电流,输出三相调制波信号。
为了验证仿真模型的正确性,构建了整体控制模型,包含虚拟阻抗与QPR准比例谐振控制。仿真结果显示,电流内环设计合理,通过Bode图验证QPR控制器在50Hz频率点实现了无静差跟踪,证明了控制器设计的合理性。
仿真模型还展示了并网输出功率的无静差跟踪性能。进一步,通过观察输出电压电流以及电流THD波形,确认THD值仅为0.52%,满足并网谐波指标要求。
综上所述,基于准比例谐振控制器(QPR)的VSG模型能够有效实现并网效果,确保并网输出电流质量、功率跟踪精度以及电压电流的谐波指标,具有较高的实用价值与工程应用潜力。
PLECS TI C2000嵌入式代码生成 应用范例13(122):并网三电平NPC逆变器的SVPWM控制
并网三电平NPC逆变器的SVPWM控制与嵌入式代码生成应用概述
该文章介绍了使用空间矢量脉宽调制(SVPWM)和中性点平衡技术在电流闭环中对并网三电平NPC逆变器的仿真。此演示模型展示了如何在使用德州仪器(TI)C2000 MCU的PLECS嵌入式编码器上实现典型工作流程。结合PLECS RT Box,可以直接验证MCU的性能。
电源电路包括通过LCL滤波器连接到电网的三相NPC逆变器。当“Sun”处于标称辐射水平时,直流输入提供800 V的全电压。两个直流电容器分别向逆变器的上半部分和下半部分提供输入。SVPWM算法中包含了中性点平衡技术。
控制部分包含两个闭环d-q电流控制器和带中性点平衡方案的三电平SVPWM。控制器模型中实现了ADC和PWM块,将直流链路电压、交流电流、交流电压和滤波电容器电流的测量引入到模型环境中。
在“Controller”子系统中,实现了两个闭环d-q电流控制器和带中性点平衡方案的三电平SVPWM。它包含来自TI C2000目标组件库的ADC和PWM块。SVPWM方案中有三个NPC支路(相位u、v和w),每个支路包含四个开关,通过控制这四个开关,逆变器输出允许三种不同的电压水平。
中性点平衡技术基于主动控制中性点电流。该技术基于在SVPWM矢量图中操纵零矢量对以平衡中性点。
配置TI C2000目标库组件时,SVPWM调制器的输出以占空比的形式提供给PWM块作为输入,配置包括载波类型、载波频率和消隐时间参数。通过RT Box启动板接口板上的dip开关“DI-29”可以启用或禁用PWM信号。
仿真部分展示了如何将“Controller”子系统直接转换为TI 28379D启动板的目标特定代码。在实时模型运行中,观察实时波形,调整MCU中控制程序的参数。
结论部分总结了此模型演示了支持TI C2000 MCU嵌入式代码生成的并网NPC逆变器系统的实现。
PLECS应用范例(77):三相T型逆变器(Three-Phase T-Type Inverter)
本演示介绍了一种三相T型逆变器,用于部署Wolfspeed SiC MOSFET的并网应用。T型逆变器类似于三电平中性点箝位(NPC)逆变器,因为它在0V时增加了额外的输出电压电平,从而比标准的两电平逆变器提供了更好的谐波性能。T型逆变器的优点是减少了部分计数和减少了外部开关器件的传导损耗,但缺点是阻断电压降低。演示模型显示了一个额定值为22 kVA的T型逆变器示例,该逆变器将800 V直流母线转换为三相60 Hz、480 V(均方根)配电,用于工业应用。
T型逆变器的热性能受到设备选择、控制器参数和调制方法的影响。在演示模型中,所有12个器件均配置为演示不同Wolfspeed SiC MOSFET的热损耗性能。每个半导体器件被建模为具有定制掩模配置的子系统,每个都有自己的热模型。设备断言(Device Assertions)会检查设备在安全操作区域内的运行情况,并生成警告。
控制器实现的高级示意图如图4所示。图5所示的去耦合同步参考框架电流控制器用于为调制器生成dq电压参考,调制器则将变频器的输出电流调节到所需的设定点。控制器包括直接电流和正交电流的PI调节器,电压参考的相位角由一个简单的同步参考框架锁相环(PLL)测量得到。使用PLL的角度输出,电压参考值被转换为三相电压参考值,并送入一个调制器。调制器的实现可以采用不同的调制方法,包括经典的正弦脉宽调制(SPWM)、空间矢量PWM(SVPWM)、三次谐波注入PWM(THIPWM)、三次谐波零序PWM(THZSPWM)和不连续PWM(DPWM)。
使用提供的模型运行仿真,可以观察到每个相支路的PWM信号、输出交流电流、设备S11和S12的信号以及系统的计算损耗。参数扫描是确定设计决策如何在一系列操作条件下影响变换器性能的有效方法。通过操纵调制方案、开关频率、停滞时间、控制器设定点和控制器增益,可以试验控制器设置。此外,还可以分析设备类型、并联设备的数量以及外部冷却或更大散热器的影响。所有这些设置都会影响损耗行为和系统效率。如果设备在安全操作区域外运行,模拟窗口的右下角将出现一个警告图标,以确定违反了哪些操作标准。
模型重点介绍了用于工业配电网应用的三相T型逆变器。通过简单的设备和控制器设计,突出了PLECS的热建模能力。此模型可用作研究控制器设计对其他拓扑效率影响的示例。
三相逆变器的simulink仿真中电压电流双闭环控制参数到底如
在三相逆变器的Simulink仿真中,电压电流双闭环控制参数的设计与验证是关键步骤。首先,通过构建三相并网逆变器模型,确保数学模型能够与物理模型的输出相吻合,这为控制器设计提供了坚实基础。模型中通过加入电网电压前馈和解耦项,实现了对d、q分量的独立控制,使得在输入信号变化时,输出量不受影响,有效实现了解耦控制。
在控制器设计方面,采用PI控制器进行电流环控制。通过对比系统模型与典型二阶系统的特性,发现控制器参数设计时需考虑附加闭环零点对动态性能的影响。基于此,设计控制器参数以满足系统动态性能要求,如峰值时间提前、超调量增加等。同时,通过伯德图分析,直观验证了控制器设计的合理性。
针对调制器模型,详细讨论了开关过程中的调制器增益与控制延时。通过分析调制器输出特性,解释了其零阶保持器特性,以及控制周期内的延时效应。此外,系统模型中加入调制器增益与控制延时,确保了仿真模型的完整性与准确性。
总结而言,电压电流双闭环控制参数的设计需综合考虑数学模型与物理模型的匹配、解耦控制的实现、控制器动态性能的优化以及调制器特性的影响。通过上述步骤,能够有效设计出满足性能需求的控制器,确保三相逆变器在Simulink仿真中的稳定运行与高效控制。
阻抗建模、验证扫频法光伏并网逆变器扫频与稳定性分析(包含锁相环电流环)(Simulink仿真实现)
并网逆变器序阻抗扫描与稳定性分析,结合锁相环与电流环,是新能源变流器研究的重要部分。本文旨在介绍一种基于Simulink仿真的光伏并网逆变器扫频与稳定性分析方法。
首先,概述了逆变器序阻抗扫描的关键步骤,包括阻抗建模与验证,以及扫频法的应用。通过设置扫描范围与点数,可以准确评估逆变器在不同电网条件下的性能。程序附带详尽注释,确保代码清晰易懂,包含阻抗建模与扫频两个部分。
进一步,提供了在线讲解,演示如何高效使用仿真程序,一次可扫描五个点,实测30个点仅需2到5分钟。仿真结果包括Nyquist奈奎斯特曲线,为分析提供直观数据支持。
稳定性分析采用序阻抗方法,理论与仿真结果一致。然而,在考虑电网阻抗影响的电流环路分析(dq阻抗)时,遇到特定问题。例如,当电网阻抗为10mH时,仿真显示不稳定现象,序阻抗判定同样不稳定。详细分析结果如下。
运行结果显示,特定条件下逆变器稳定性受到挑战。针对此现象,后续研究可深入探讨电流环路设计与优化,以提高逆变器在弱电网条件下的稳定性能。
参考文献部分,引用了李杨和伍文华的研究,进一步支持本文分析方法的理论基础与应用价值。文章中提及的引用会确保准确性与合法性。
最后,为确保学术诚信,引用来源均注明出处或引用为参考文献。如发现任何不妥之处,请随时联系作者,以便及时修正。
三相四线制逆变器并网电流复合控制策略
三相四线制逆变器并网电流复合控制策略是一种融合PI控制、PR控制和重复控制的策略,旨在优化并网性能和补偿负载影响。具体解释如下:
融合多种控制方法:
PI控制:用于跟踪直流分量,以其高速度特性确保电流控制的及时性。PR控制:针对特定频率谐波进行控制,利用其带宽和精度优势提高谐波抑制能力。重复控制:处理所有谐波,通过全面跟踪特性增强系统的稳定性和性能。基波正序电压检测器:
通过补偿电流,确保电位基波正序电流三相对称,从而适应电网电压的畸变和不平衡状态。系统结构与控制流程:
利用PLL提取电网电压相位,确保逆变器与电网的同步。根据需求计算正序电压和电流参考值,为控制策略提供基准。内环采用PI控制跟踪直流分量,外环或特定环节采用PR控制和重复控制处理谐波。适应非理想工况:
在电压畸变和不平衡等非理想工况下,复合控制策略仍能快速、精确地跟踪并网电流指令。降低谐波和不平衡度,提高逆变器的并网性能和稳定性。仿真结果验证:
仿真结果表明,该复合控制策略在负荷变化和电压不理想的情况下仍能保持三相电流的对称性和中线电流的极小化。显示了该控制策略的有效性和稳定性,在实际应用中具有广阔的前景。基于准PR控制的LCL三相并网逆变器仿真模型(Simulink仿真实现)
基于准PR控制的LCL三相并网逆变器仿真模型,利用Simulink进行实现。该逆变器在电力电子领域具有高效性、高功率密度和可编程性强的特性,广泛应用于可再生能源、电动汽车等领域。
构建电力系统模型时,需包含直流电源、LCL三相并网逆变器、输出滤波器和电网。在逆变器中,需建立准PR控制器模型,实现对输出电压和电流的控制。模型建立需考虑电感值、电容值、阻值等参数的精确性,仿真中应实时监控和记录数据,分析和验证结果,并对仿真结果进行优化和调整,以满足实际应用需求。
运行结果方面,通过Simulink仿真,模型运行稳定,输出符合预期,验证了准PR控制在LCL三相并网逆变器中的有效性。
参考文献中提及的相关研究,有助于理解准PR控制在LCL三相并网逆变器中的应用及分析方法。如有引用或借鉴,会注明出处,并保持内容的准确性。
具体Simulink仿真实现步骤及详细讲解将在后续文档中提供,以满足对准PR控制在LCL三相并网逆变器仿真模型构建和运行细节的深入理解需求。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467