发布时间:2025-03-22 15:30:23 人气:
光伏逆变器和光伏组件的配比是多少?
光伏组件和逆变器配比该怎么计算?是不是5KW的组件就要配5KW的逆变器呢?很显然,并不是。下面小编就给各位简单的说一说这分布式光伏组件和逆变器的配比。
当我们不知5KW的逆变器配多少的时候,我们身边的人总是众说纷纭。有人说按1.2比例配,也有人说按1.1的比例配……那如此配比是哪里来的,有什么含义?
其实我们常说的比值指的是DC/AC,也就是光伏组件的功率/光伏逆变器的功率,那我们首先来看下这个比值是什么:
上面是一个光伏系统的简图,光伏组件发出的直流电(DC)经过光伏逆变器逆变成交流电(AC)进入电网,那么整过过程中光伏逆变器只是把直流电变成交流电,俗称的DC/AC的比值就是光伏组件的安装量和光伏并网逆变器最大交流输出的比值。
我们以5KW的光伏组件安装量为例:
这个比值为1.25,意思是我装了5KW的光伏组件,但是由于实际安装地点的经纬度、倾角、朝向等一系列因素的影响,光伏组件最终产生的直流电也就4KW,那么这个时候选择4KW的光伏逆变器就可以了,并不需要5KW的光伏逆变器。
注:组件的功率单位一般标为wp,如255wp,p是peak的意思,一般是指组件标准测试条件:(大气质量AM1.5, 辐照度1000W/m², 电池温度25°C)下的测量值, 而实际情况并非如此。
所以DC/AC更多时候是一个经验值,而不是一个固定值,当有实际项目支撑的时候,我们可以根据实际情况去获得DC/AC的比值作为对当前选型时的支撑。
首次安装的时候,针对不同地区组件与逆变器容量配比,可以上网查询DC/AC的理论值,或向他人咨询经验值,当具有一定经验后可以用自己的经验值来代替。
这样完成DC和AC的最佳配比后还要注意光伏组串的电压与逆变器的电压范围是否匹配以及逆变器的输入路数是否满足。
常见的逆变器是根据晶硅组件的特性开发的,目前光伏系统要求的最大电压为1000V,对于电压的配置除了同一路MPPT电压需要相等外,还需要考虑逆变器的MPPT电压范围,确保组件的工作电压在MPPT电压范围内,否则会导致逆变器的输出效率不高。
光伏发电站的逆变器怎么设置
太阳能光伏发电并网系统中的并网逆变器设置方式分为:集中式、主从式、分布式和组串式。
1、集中式
集中式并网方式适合于安装朝向相同且规格相同的太阳能电池方阵,在电气设计时,采用单台逆变器实现集中并网发电方案如图1所示。
对于大型并网光伏系统,如果太阳能电池方阵安装的朝向、倾角和阴影等情况基本相同,通常采用大型的集中式三相逆变器。
该方式的主要优点是:整体结构中使用光伏并网逆变器较少,安装施工较简单;使用的集中式逆变器功率大,效率较高,通常大型集中式逆变器的效率比分布式逆变器要高大约2%左右,对于9.3MWp光伏发达系统而言,因为使用的逆变器台数较少,初始成本比较低;并网接入点较少,输出电能质量较高。该方式的主要缺点是一旦并网逆变器故障,将造成大面积的太阳能光伏发电系统停用。
集中逆变一般用于大型光伏发电站(>10kW)的系统中,很多并行的光伏电池组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP来改善所产出电能的质量,使它非常接近于正弦波电流。
最大特点是系统的功率高,成本低。但受光伏电池组串匹配和部分遮影的影响,导致整个光伏系统的效率不高。同时整个光伏系统的发电可靠性受某一光伏电池单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏电池阵列的接口箱,对每一串的光伏电池组串进行监控,如其中有一组光伏电池组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串光伏电池停止工作,从而不会因为一串光伏电池串的故障而降低和影响整个光伏系统的工作和能量产出。
2、主从式
对于大型的光伏发电系统可采用主从结构,主从结构其实也是集中式的一种,该结构的主要特点是采用2~3个集中式逆变器,总功率被几个逆变器均分。在辐射较低的时候,只有一个逆变器工作,以提高逆变器在太阳能电池方阵输出低功率时候的工作效率;在太阳辐射升高,太阳能电池方阵输出功率增加到超过一台逆变器的容量时,另一台逆变器自动投入运行。
为了保证逆变器的运行时间均等,主从逆变器可以自动的轮换主从的配置。主从式并网发电原理如图2所示。主从结构的初始成本会比较高,但可提高光伏发电系统逆变器运行时的效率,对于大型的光伏系统,效率的提高能够产生较大的经济效益。
3、分布式
分布式并网发电方式适合于在安装不同朝向或不同规格的太阳能电池方阵,在电气设计时,可将同一朝向且规格相同的太阳能电池方阵通过单台逆变器集中并网发电,大型的分布式系统主要是针对太阳能电池方阵朝向、倾角和太阳阴影不尽相同的情况使用的。
分布式系统将相同朝向,倾角以及无阴影的光伏电池组件串成一串,由一串或者几串构成一个太阳能电池子方阵,安装一台并网逆变器与之匹配。分布式并网发电原理如图3所示。这种情况下可以省略汇线盒,降低成本;还可以对并网光伏发电系统进行分片的维修,减少维修时的发电损失。
分布式并网发电的主要缺点是:对于大中型的上百千瓦甚至兆瓦级的光伏发电系统,需要使用多台并网逆变器,初始的逆变器成本可能会比较高;因为使用的逆变器台数较多,逆变器的交流侧和公用电网的接入点也较多,需要在光伏发电系统的交流侧将逆变器的输出并行连接,对电网质量有一定影响。
4、组串式
光伏并网组串逆变器是将每个光伏电池组件与一个逆变器相连,同时每个光伏电池组件有一个单独的最大功率峰值跟踪,这样光伏电池组件与逆变器的配合更好。组串逆变器已成为现在国际市场上最流行的逆变器,组串逆变器是基于模块化概念基础上的,每个光伏组串(1kW~5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。许多大型光伏阀电厂使用组串逆变器,优点是不受光伏电池组串间差异和遮影的影响。
在组串间引入“主-从”概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏电池组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。
多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。在多组串逆变器中,包含了不同的单独功率峰值跟踪DC/DC变换器,DC/DC变换器的输出通过一个普通的逆变器转换成交流电与电网并联。由于是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。
另需要解决的是怎样更有效的与电网并网,简单的办法是直接通过普通的交流开关进行并网,这样就可以减少成本和设备的安装,但往往各地的电网的安全标准也许不允许这样做。另一和安全有关的因素是是否需要使用隔离变压器(高频或低频),或允许使用无变压器式的逆变器。
光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。
怎样使光伏组件串与光伏逆变器达到最佳匹配?
假若初始电站设计容量为A(MW),通过计算当电站电池板扩容到B(MW)时,电站的全局投资性价比为最优,此时该电站的最佳容配比为:K=B/A。当超过逆变器标称功率的100%、105%、110%时,其最优容量配比分别为1.05、1.1、1.15。
明确了最佳容配比,在光伏电站设计的时候要稍加注意。另外光伏电站最优容量配置比还受一些内外在因素的影响,如太阳能光照资源、电站效率、逆变器发电能力、电站综合单价以及光伏组件单价等。
光伏逆变器注意事项
逆变器的效率并不是固定的,在40%到60%功率时,效率最高,低于40%或超过60%时,效率就会降低。而逆变器的寿命与运行温度有很大关系,逆变器长时间高功率作业时温度最高,据测试,逆变器长期工作在80-100%功率时寿命要比在40-60%功率低20%左右。
工作电压在逆变器的额定工作电压左右时效率最高,单相220V逆变器,逆变器输入额定电压为360V,三相380V逆变器,逆变器输入额定电压为650V。如3kW逆变器,配260W组件,工作电压30.5V,配12块工作电压366V,功率为3.12kW为最佳。
光伏发电系统容配比计算基本原则及最优容配比经济性分析
容配比是光伏电站组件标称功率与逆变器额定输出功率的比例,早期设计通常为1:1。然而,在光照不足或温度影响下,组件输出功率低于标称值,导致逆变器长期不满载运行,造成容量浪费。因此,适当提高容配比,即超配设计,已成为提升系统效率、降低度电成本和增加收益的有效策略。
本文通过理论分析和实际案例,阐述了容配比设计的重要性和影响因素。组件功率基于STC条件标定,但实际应用中,地区辐照度、系统损耗、灰尘遮挡等因素导致逆变器输入功率远小于组件标称功率。尤其在不同资源区,全年辐射量存在显著差异,对设计产生影响。系统损耗主要包括直流电缆、汇流箱等设备的损耗,以及灰尘遮挡引起的组件失配,平均损耗约为8%~13%。
在STC条件下,即使逆变器额定功率与组件标称功率相等,系统实际输出功率仅为额定功率的90%左右,未达到满载状态,降低了利用率和增加了损耗。此外,其他因素如电站投资、组件实际衰减、逆变器性能差异等也影响最优容配比设计。
最优容配比计算分为两类原则:补偿超配和主动超配。补偿超配以系统不会出现限功率为原则增大容配比,而主动超配以系统度电成本最低为原则,即使可能出现逆变器限功率情况。通过计算不同资源区的典型区域,考虑系统效率、初始投资、经济性分析,本文提供了理论和实际依据。
研究表明,不同资源区的最优容配比存在差异,II类资源区的容配比为1.2倍时,系统不会出现限功率,经济性最佳配置点为1.2至1.3倍;III类资源区的容配比低于1.4倍时,不会出现限功率,经济性最优容配比超过1.4倍。合理设计系统容配比,有利于提升光伏发电系统的经济性。
成功与失败的关键在于方法与原因的识别,成功并非偶然,而是由多个因素构成的完整过程。分享经验与知识是积极的生活态度,有助于促进个人与社会的进步。
光伏电站如何匹配逆变器才正确?
1. 在选择光伏电站的逆变器时,正确匹配是关键。电站设计容量为A(MW)时,可通过计算电池板扩容到B(MW)时的投资性价比来确定最佳容配比,即K=B/A。
2. 当逆变器负载超过其标称功率的100%、105%、110%时,最优容量配比分别为1.05、1.1、1.15。在电站设计时,应考虑这一最佳容配比。
3. 光伏电站的最优容量配置比还受到多种因素的影响,包括太阳能光照资源、电站效率、逆变器发电能力、电站综合单价和光伏组件单价等。
4. 用户和系统安装商在安装光伏电站时,如果能够考虑到这一容配比,将显著提高发电量。
5. 国家发展和改革委员会能源研究所研究员王斯成呼吁对“光伏-逆变器容配比”进行调整。
6. 根据《GB50797-2012:光伏发电站设计规范》,逆变器的配置容量应与光伏方阵的安装容量相匹配,确保逆变器允许的最大直流输入功率不小于光伏方阵的实际最大直流输出功率。
7. 在国际上,光伏发电系统的交流容量通常定义为光伏系统额定输出或合同约定的最大功率,单位为MW。
8. 国内标准在光伏电站的功率比方面还处于发展阶段。光伏电站通常设计成高光伏-逆变器功率比以降低度电成本。
9. 适度提高光伏-逆变器容配比是光伏系统设计的重要技术创新,自2012年以来被光伏界普遍接受。例如,美国FirstSolar的光电站容配比通常选在1.4:1.0。
10. 基于平均神改化度电成本最低的原则,最优的光伏-逆变器容配比均大于1:1。因此,适当提升光伏组件容量(也称组件超配)有助于提升系统整体效益。
11. 目前,许多电站采用组件超配的方法来提高逆变器的运行效率和电站收益。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467