发布时间:2025-03-22 04:50:00 人气:
LCC 和 VSC (MMC) 的底层特性区别
本文主要探讨了LCC(电流源换流器)和VSC(电压源换流器)在底层特性上的区别,尤其关注它们在高压直流输电中的应用,例如MMC(模块化多电平换流器)。LCC的基础是电流源逆变器,其特点是直流电流确定,通过改变电压极性控制能量流动,只有一个控制自由度。相反,VSC使用电压源逆变器,电流双向流动,具备两个控制自由度,能独立控制有功和无功功率,更灵活。
在高压直流输电中,VSC(如MMC)可以看作是一个无转动惯量的电动机或发电机,其电流和电压均能灵活控制,这与LCC的单向控制形成对比。VSC的控制策略通常包括双闭环系统控制和子模块级的电压均衡等,这些特性使得VSC在直流输电中的“柔直”特性更加明显。
尽管VSC技术在控制复杂度上高于LCC,但这种灵活性和控制能力使得它在高压直流输电中有着显著的优势,尤其是在多端系统中,VSC能够更好地实现功率的灵活转移。下一篇文章将深入讨论点对点和多终端MMC-HVDC的控制策略。
多电平逆变技术及其应用目录
多电平逆变技术及其应用是一个广泛且深入的研究领域,涵盖了从基础理论到具体应用的多个层面。本文将详细介绍多电平逆变技术的定义、发展、应用领域以及基本工作原理、分类和特点。此外,文章还将探讨不同类型的多电平逆变器,如钳位式和级联式逆变器,并分析其控制技术。
在多电平逆变技术中,多电平逆变器是一种能够生成多于两个电压电平的设备。它们通过多个电压源的组合来实现输出电压的多级化,从而提高逆变效果的效率和质量。这些技术广泛应用于电力电子设备、电机控制、电源管理、有源滤波、静止同步补偿器等领域,以提供更高效、更稳定的电力转换和分配。
多电平逆变器可以分为钳位式和级联式两大类。钳位式多电平逆变器通过在电路中使用二极管、飞跨电容或电容钳位等手段,实现输出电压的多级化。而级联式多电平逆变器则是通过将多个单级逆变器级联起来,通过控制不同逆变器的工作状态,实现输出电压的多级化。
控制技术方面,多电平逆变器的控制方法主要包括脉宽调制(PWM)技术,它通过调整开关的通断时间来生成期望的输出电压。PWM控制技术可以进一步分为载波PWM控制、空间电压相量PWM控制等,它们能够有效降低逆变器的谐波输出,提高系统效率和性能。
在实际应用中,多电平逆变技术被广泛应用于各种场合,包括变频调速系统、中高压变频调速、有源滤波器、静止同步补偿器等。在变频调速系统中,多电平逆变器能够提供更平滑的转矩控制,减少电机振动和噪声;在中高压变频调速中,它们能够提高系统的可靠性和效率;在有源滤波器中,多电平逆变器能够有效消除电网中的谐波,提高电网质量;在静止同步补偿器中,它们能够实现对电网无功功率的动态补偿,维持电网电压稳定。
综上所述,多电平逆变技术及其应用是一个复杂而重要的研究领域,它在现代电力电子技术中扮演着关键角色,为提高电力系统的性能、效率和可靠性提供了有力支持。
多电平逆变电路主要有哪几种形式,各有什么特点
多电平逆变电路在现代电力电子技术中占据重要位置。常用的多电平逆变电路包括三种形式:三电平、五电平和七电平。它们的特点在于利用阶梯波形逼近正弦波。具体而言,三电平逆变器通过三个电压电平来近似正弦波,而五电平和七电平逆变器则通过更多的电平来提高逼近精度。
三电平逆变器相较于传统的两电平逆变器,能够提供更平滑的输出波形。它的优点在于降低了开关频率,减少了功率开关元件的损耗,降低了电磁干扰,提高了逆变器的效率。然而,三电平逆变器需要更多的功率开关元件,这增加了系统的复杂性和成本。
五电平逆变器在输出波形逼近精度方面更进一步,它通过五个不同的电平来逼近正弦波。这使得五电平逆变器在输出波形的平滑度和失真度方面优于三电平逆变器。然而,五电平逆变器的缺点是需要更多的功率开关元件,增加了系统的复杂性和成本。
七电平逆变器是最高级别的多电平逆变器,它通过七个不同的电平来逼近正弦波。七电平逆变器的优点在于输出波形的平滑度和失真度都非常高,能够提供接近理想的正弦波输出。然而,七电平逆变器需要更多的功率开关元件,增加了系统的复杂性和成本。
总的来说,多电平逆变器的优点在于能够提供更平滑的输出波形,降低开关频率,减少功率开关元件的损耗,降低电磁干扰,提高逆变器的效率。然而,多电平逆变器的缺点是需要更多的功率开关元件,增加了系统的复杂性和成本。
逆变器的控制策略是影响其性能的关键因素。在实际应用中,多电平逆变器的控制策略通常采用空间矢量调制技术。这种技术通过优化开关模式,使逆变器输出波形更加接近正弦波。空间矢量调制技术能够有效降低逆变器的谐波含量,提高其输出波形的正弦度。
研旭电力电子功率硬件 多电平MMC变流控制系统YXPHM-MMC500
南京研旭公司最新研发的YXPHM系列工业级电力电子功率模块,为高校实验室、科研院所以及成品电力电子制造厂商提供了系列功率拓扑模块。模块外壳采用透明亚克力板材,美观实用,方便用户观察内部结构,简洁的输入输出设计,减少了用户对模块中间环节的困扰。YXPHM系列基于模型设计理念,集成在光伏并网逆变器与风机变流器等成熟产品中,结合模块化组件与开放式平台研发经验,进一步集成控制电路、传感器电路与信号处理电路。提供实际控制器接口、快速原型控制器结构与实际控制器模块,为用户提供了性价比更高的模块化产品。
模块化多电平变换器(MMC)是级联型多电平换流器的新型结构,在中高压应用领域具有显著优势。相比于二极管钳位型等多电平拓扑,MMC在电平数高、损耗小、输出谐波小与冗余性上表现出色。与级联H桥结构相比,MMC避免了电容分散导致的中频变压器数量问题。每个MMC子模块结构简单,控制相对容易,可无限拓展。在高电压、大电流应用领域,MMC已有直流输电工程实例。与传统两电平、三电平变换器相比,MMC采用子模块级联方式,避免了IGBT动态均压问题,易于维护和容量扩大,而与CHB相比,MMC省去了移相变压器,子模块数目与承载功率不受限制,通过增加子模块数目灵活扩展电压与功率等级。
多电平MMC变流控制系统设计了最大功率15kW、最大电流25A,交流电压380V、直流电压200V-800V等参数。系统每个桥臂含子模块个数为N=4,每相共2N个子模块,单相共计4N个模块,三相共计6N个模块。单个模块最高耐压650VDC、最大电流25A。模块支持半桥/全桥拓扑,内部集成了驱动及采样电路,具有过压、过流保护功能。子模块采用插拔式设计,配套3U机箱,美观大方,电容与桥臂电感的取值灵活调整。模块能输出母线电压值、交流侧电流值与FB故障信号,LED灯指示电源、运行与故障状态。硬件原理图与编程接口开放。
研旭SP6000快速原型控制器将用户设计的高级语言控制算法(Simulink)转换为DIDO、AIAO量,完成实际硬件控制。通过YX-VIEW6000监控组态软件,用户可以实时监控控制器,完成模型调试与验证。控制算法模型在Matlab中的Simulink工具搭建,通过研旭提供的simulink驱动库,将模型接口与硬件驱动接口绑定,编译成可执行文件,下载至SP6000仿真机运行,实现对被控对象的实际控制。YXSPACE-VIEW6000(VIEW6000)用于配置仿真机外设工作模式,实时监测运行量,包括采集量、中间控制变量等。用户借助6类控件,便捷了解仿真机控制过程。研旭SP6000仿真机采用插卡式结构,包含CPU板卡、模拟采集ADC板卡、模拟输出DAC板卡、数字输出DO板卡、数组输入DI板卡、PWM板卡、QEP/CAP板卡。其板卡配置安装图提供了详细布局。上位机监控软件VIEW6000采用组态式交互界面,方便查看仿真机工作信息。
MMC变流器原理
深入解析:MMC变流器的工作原理与优势
在电力系统中,变流器扮演着关键角色,其核心原理如理想变流器的等效电路,揭示了功率传输的奥秘。图1展示了变流器如何将有功功率从相位超前侧流向滞后,无功功率由电压幅值高侧导流至低侧,构建了电力交互的桥梁。
MMC(多电平逆变器)主回路的创新设计,如图2所示,西门子和中国电科院的VSC-HVDC工程,展现了技术的卓越特点。首先,MMC采用的开关器件耐压低,对器件一致性要求不高,降低了设备成本。其次,它采用多电平结构,能有效降低谐波,提升系统运行的平滑性。开关频率低,损耗减小,使得系统效率显著提升。
MMC的独特结构使其能轻易实现背靠背连接,能量流动双向进行,无需额外的输出变压器,显著节省空间与成本。模块化设计便于容量扩展和冗余配置,提高了系统的灵活性和可靠性。但同时也带来挑战,如桥臂环流问题,需要通过精确的控制来抑制。
图4揭示了背靠背MMC的拓扑,换流器桥臂电流包括电网电流、直流电流和环流分量。桥臂电流的复杂性要求精细的控制策略,以保证电网的稳定运行。图5详细描绘了各个电流分量的路径,揭示了每相桥臂的电压和电流动态。
在子模块设计中,HBMMC拓扑结构如图7所示,通过T1和T2开关单元的巧妙设计,子模块可灵活地在电容电压Uc与0之间切换,实现三种工作状态,确保了输出的高效控制。
主回路参数设计中的桥臂电感Larm至关重要,它起到交流连接、抑制环流和保护短路的作用。在实际应用中,电感的选择需平衡电感的压降、成本和系统稳定性,通过仿真优化,已将电感量从20mH减小到3mH,显著提升了系统性能。
功率模块的直流电容则是决定电容电压波动范围的关键参数,通过合理计算,确定了10mF的电容值,以满足稳定运行的需求。主回路参数的调整,无论是减小电容还是增加,都会影响输出电流波形,必须精细调整以保持系统稳定。
最后,控制功能设计采用双闭环控制方法,实现精确的有功和无功功率控制,确保在变频工况下,功率单元的稳定运行。通过外环控制器,两台换流器协同工作,实现功率的灵活传输。
总的来说,MMC变流器以其独特的架构和精密的控制技术,为电力系统的高效、稳定运行提供了强有力的支持。每个环节的设计都体现出其在电力系统中的不可或缺性,展示了其在现代电力技术中的重要地位。
RT Box应用范例 8(96):模块化多电平变流器(Modular Multilevel Converter)
RT-Box演示模型展示了具有开环控制的并网模块化多电平变流器(MMC)。该模型可在单任务或多任务模式下进行模拟,实现这一功能需要将物理模型分解为不同的部分。PLECS库中的任务框架组件完成这一任务,确保模型与多任务环境中的指定任务关联。在RT-Box 2或RT-Box 3上,通过在不同的CPU核上执行每个指定的任务,减少整体离散化步长,实现实时模拟。
要运行演示模型,需访问www.plexim.com获取相关项目。模型初始化命令包含在PLECS Standalone的“Simulation + Simulation Parameters... + Initializations”菜单或PLECS Blockset的右键点击“Simulink model window + Model Properties + Callbacks + InitFcn*”中。
模型顶层示意图如图1所示。在开环运行模式下,PWM生成与功率电路在同一RT Box上运行。子系统配置为“atomic”原子,并通过右键单击子系统并选择“Subsystem + Execution settings....”启用“code generation”代码生成。
电源电路模型,如图2所示,包括连接交流系统和直流系统的MMC。每个子模块由全桥和直流链路电容器组成,单相对变流器臂与交流电网连接。全桥(串联)功率模块库组件实现变流器臂,配置为适用于离线和实时仿真的子周期平均实现。模型结构的隐式矢量化允许在模型初始化命令中使用变量num_sm配置单元数量,无需额外布线或组件扩展。
任务分配模式分为单任务和多任务。在“Single-tasking”模式下,忽略所有任务框架组件,在单个基本任务中执行物理系统。在“Multi-tasking”模式下,物理模型被分为三个不同的任务,分别与RT-Box 2/3的三个可用CPU核相关联。系统拆分通过在战略位置放置受控电流源和受控电压源实现,避免状态/源依赖。每个核心的单个CPU负载较小,平均执行时间减少,离散步长的减小提高频率分辨率和实时仿真保真度。
演示模型为开环运行,PWM生成与功率电路在同一框中执行。通过PWM输出块路由PWM信号至数字输出,反馈至数字输入,再利用PWM捕捉模块引入实时仿真。
该模型可在计算机上以脱机模式运行,也可在PLECS RT Box上以实时模式运行。在“External Mode”下的实时操作期间,可通过PLECS示波器“测量Measurements”观察臂电压和交流电网电流,如图5所示。
结论,此RT-Box演示模型在开环控制下展示了并网MMC逆变器。该模型在RT Box 1、2或3的一个CPU核上以单任务模式运行,或在RT Box 2或3的三个CPU核上以多任务模式运行。多任务模式可显著减少平均执行时间,带来性能提升。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467