发布时间:2025-03-17 14:30:00 人气:
能否介绍下逆变器电路以及对应的详细原理
逆变器电路图是将直流电转换为交流电的电路图示。常见的逆变器电路主要由直流电源、开关电路、控制电路和输出滤波电路等部分组成。
直流电源是逆变器的能量来源,一般为电池或整流后的直流电源。开关电路是核心部分,由多个功率开关管(如MOSFET或IGBT)组成,通过控制开关管的导通和截止,将直流电转换为交流电。控制电路负责产生合适的控制信号,精确控制开关管的导通时间和顺序,以确保输出交流电的频率、幅度和相位符合要求。输出滤波电路则用于滤除开关过程中产生的高频杂波和纹波,使输出的交流电更加纯净、稳定。
其工作原理基于电力电子技术。以最基本的单相桥式逆变器为例,四个开关管按一定规律轮流导通和截止。在一个周期内,两组开关管交替工作,使输出端得到正负交替的电压,从而形成交流信号。通过调整控制信号的频率,可以改变输出交流电的频率;调节开关管的导通时间占比(即脉宽调制,PWM),能够控制输出电压的幅度。逆变器广泛应用于不间断电源(UPS)、太阳能发电系统、电动汽车等领域,满足不同场景下对交流电的需求 。
逆变器电路图及原理
一、基本逆变器电路
理解逆变器的基本原理对于设计电路至关重要。图一展示了一种基于12V直流到220V交流的简单逆变器电路。核心部分由BG2和BG3组成的多谐振荡器控制BG1和BG4,进而驱动BG6和BG7工作。整个电路由BG5和DW构成的稳压电源供电,确保了频率的稳定性。市电变压器提供双源虚12V输出,而电池的容量决定了逆变器的工作时间。
二、高效率正弦波逆变器
图二介绍了一种高效率的正弦波逆变器电路,它使用12V电池作为电源,并通过倍压模块为运放供电,例如使用ICL7660或MAX1044。运放1负责产生50Hz的基准信号,运放2则作为反相器使用,运放3和4构成了比例开关电源,实现两个开关管的交替工作。电路中的迟滞比较器的正反馈确保了频率的调整。C3和C4用于滤波,C5的值通过计算确定,L的值通常选为70H。R4和R3之间的比例需要精确,以避免波形失真。开关管的最大电流应根据公式计算,例如I=25A。
在选择逆变器时,必须考虑实际应用需求和电器的特性。此外,还需要根据驱动波形是正弦波还是方波来选择合适的逆变器。
最简单的逆变器电路
最简单的逆变器电路:
下图是一个简单逆变器的电路图.其特点是共集电极电路,可将三极管的集电极直接安装在机壳上,便于散热.不易损坏三极管.,我的简单逆变器用了十多年了,没出现过一次烧管的事.现给大家介绍一下制作方法.
变压器的制作:
可根据自己的需要选用一个机床用的控制变压器.我用的是100W的控制变压器.将变压器铁芯拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的漆包线,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个4V的线圈为反馈线圈,线圈的层间用较厚的牛皮纸绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的.
可换一下接头.这样变压器就做好了. 电阻的选择.两个与4V线圈串联的电阻可用电阻丝制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由
于管子的参数不一致有时不起振,最好接一个. 三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了. 接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻.
调整完毕后就可以正常使用了. 我的逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.
干货单相半桥逆变电路讲解,工作原理:4种工作状态,秒懂
大家好,我是李工,创作不易,希望大家多多支持我。今天给大家分享的是:单相半桥逆变器。
在上一篇文章中,我已经给大家介绍了单相全桥逆变器,感兴趣的朋友可以点击下方链接查看:
干货单相全桥逆变电路讲解,工作原理+波形图+优点,一看就懂
一、单相半桥逆变器
单相半桥逆变器的结构相对简单,由2个晶闸管T1和T2以及2个反馈二极管D1、D2组成的半桥逆变电路。每个二极管和晶闸管都和三线直流电源反并联,电源端提供平衡直流电压。
下面是半桥逆变器的基本配置,负载为RL负载。
在单相逆变器中,我们可以使用其他功率半导体开关器件,如IGBT、功率MOS关等,不一定非要使用晶闸管。
这里假设,每个晶闸管在其栅极信号存在期间导通,并在该信号移除时换向。晶闸管T1和晶闸管T2的门控信号分别为ig1和ig2。
负载RL连接在A点和B点之间。A点始终被视为相对于B点的+ve。如果电流沿着该方向流动,假设电流为+ve,类似地,如果电流从B流向A,则电流被视为-ve。
由于感性负载,输出电压波形与R负载相似,然而,输出电流波形与输出电压波形并不相似。
在RL负载输出的情况下,电流I0是时间的指数函数,输出电流滞后输出电压一个角度pin。
Φ = tan -1 (ωL/R)
二、单相负载半桥逆变器的工作原理(RL)
半桥逆变器的工作原理分为4种工作模式:
1、模式Ⅰ:T1开启
在这个期间,向晶闸管T1提供栅极脉冲,因此T1在时刻t1导通,电流从电源电压的上半部分流动。
电流沿着路径:Vs/2(上电源)-T1-负载-Vs/2。
在这个模式下,电感存储能量,并且输出电流作为时间的函数从0到其最大值(Imax)和电感两端的感应电压+V L以指数方式增加。
这次的输出电压也为正,因为A点相对于B点为正(+ve)。
应用KVL,Vs/2 – V0=0
输出电压的大小Vo = Vs/2。
在时刻T/2,输出电流达到最大值,由于电压和电流的极性相同,晶闸管T1在此时关断。
2、模式II (T/2 < t < t2)
在T/2时刻,电感耗散能量之后,当电感耗散能量时,会改变其极性。而我们知道,电感的特性,电感是不允许电流突然变化的。因此,电感通过D2二极管缓慢释放能量。
此时D2二极管导通,电流沿着路径:负载-电源下半部分(Vs/2)-D2-负载。
此时电感释放的能量反馈带下半部分电源。
在此模式下,输出电流为正,但由于感性负载消耗的能量,输出电流主见从Imax减小到0,输出电压为负(-Vs/2),因为B点相对于A为正。
3、模式III (t2 < t < T)
在时刻t2,晶闸管T2导通,电流在电路的下部分流动并遵循路径:Vs/2(下电源)- 负载 - T2 - Vs/2。
因此,电流方向是反向的,因为B点相对于A为正,并且电感以相反方向存储能量,从(-Imax) 到零。
此时,负载两端的输出电压为负(-Vs/2)。
4、模式IV(0 < t < t1)
在时刻T,输出电压和输出电流具有相同的极性。因此,T2 由于感性负载而关断,D1 导通。
电流的路径为:负载 - D1 - Vs/2(上半部分)- 负载。
这里能量通过电感释放回到电源电压Vs/2的上部,该时间点A相对于点B为正。
因此输出电压为正Vs/2,输出电压为正Vs/2,输出电流从负最大值 (-Imax) 呈指数下降到零。
以上就是关于单相半桥逆变器RL负载的知识。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467