Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

单相半桥逆变器

发布时间:2025-03-14 03:20:37 人气:



单相半桥逆变器

大家好,我是李工,创作不易,希望大家多多支持我。今天给大家分享的是:单相半桥逆变器。

在上一篇文章中,我已经给大家介绍了单相全桥逆变器,感兴趣的朋友可以点击下方链接查看:

干货单相全桥逆变电路讲解,工作原理+波形图+优点,一看就懂

一、单相半桥逆变器

单相半桥逆变器的结构相对简单,由2个晶闸管T1和T2以及2个反馈二极管D1、D2组成的半桥逆变电路。每个二极管和晶闸管都和三线直流电源反并联,电源端提供平衡直流电压。

下面是半桥逆变器的基本配置,负载为RL负载。

在单相逆变器中,我们可以使用其他功率半导体开关器件,如IGBT、功率MOS关等,不一定非要使用晶闸管。

这里假设,每个晶闸管在其栅极信号存在期间导通,并在该信号移除时换向。晶闸管T1和晶闸管T2的门控信号分别为ig1和ig2。

负载RL连接在A点和B点之间。A点始终被视为相对于B点的+ve。如果电流沿着该方向流动,假设电流为+ve,类似地,如果电流从B流向A,则电流被视为-ve。

由于感性负载,输出电压波形与R负载相似,然而,输出电流波形与输出电压波形并不相似。

在RL负载输出的情况下,电流I0是时间的指数函数,输出电流滞后输出电压一个角度pin。

Φ = tan -1 (ωL/R)

二、单相负载半桥逆变器的工作原理(RL)

半桥逆变器的工作原理分为4种工作模式:

1、模式Ⅰ:T1开启

在这个期间,向晶闸管T1提供栅极脉冲,因此T1在时刻t1导通,电流从电源电压的上半部分流动。

电流沿着路径:Vs/2(上电源)-T1-负载-Vs/2。

在这个模式下,电感存储能量,并且输出电流作为时间的函数从0到其最大值(Imax)和电感两端的感应电压+V L以指数方式增加。

这次的输出电压也为正,因为A点相对于B点为正(+ve)。

应用KVL,Vs/2 – V0=0

输出电压的大小Vo = Vs/2。

在时刻T/2,输出电流达到最大值,由于电压和电流的极性相同,晶闸管T1在此时关断。

2、模式II (T/2 < t < t2)

在T/2时刻,电感耗散能量之后,当电感耗散能量时,会改变其极性。而我们知道,电感的特性,电感是不允许电流突然变化的。因此,电感通过D2二极管缓慢释放能量。

此时D2二极管导通,电流沿着路径:负载-电源下半部分(Vs/2)-D2-负载。

此时电感释放的能量反馈带下半部分电源。

在此模式下,输出电流为正,但由于感性负载消耗的能量,输出电流主见从Imax减小到0,输出电压为负(-Vs/2),因为B点相对于A为正。

3、模式III (t2 < t < T)

在时刻t2,晶闸管T2导通,电流在电路的下部分流动并遵循路径:Vs/2(下电源)- 负载 - T2 - Vs/2。

因此,电流方向是反向的,因为B点相对于A为正,并且电感以相反方向存储能量,从(-Imax) 到零。

此时,负载两端的输出电压为负(-Vs/2)。

4、模式IV(0 < t < t1)

在时刻T,输出电压和输出电流具有相同的极性。因此,T2 由于感性负载而关断,D1 导通。

电流的路径为:负载 - D1 - Vs/2(上半部分)- 负载。

这里能量通过电感释放回到电源电压Vs/2的上部,该时间点A相对于点B为正。

因此输出电压为正Vs/2,输出电压为正Vs/2,输出电流从负最大值 (-Imax) 呈指数下降到零。

以上就是关于单相半桥逆变器RL负载的知识。

逆变器有哪些类别?

1. 电压源逆变器:当逆变器的输入为恒定直流电压源时,该逆变器被称为电压源逆变器。这类逆变器的输入端有一个刚性的直流电压源,其阻抗为零,实际上,直流电压源的阻抗可以忽略不计。

2. 电流源逆变器:当逆变器的输入为恒定直流电流源时,该逆变器被称为电流源逆变器。刚性电流从直流电源提供给CSI,其中直流电源具有高阻抗。

3. 单相逆变器:单相逆变器将直流输入转换为单相输出。单相逆变器的输出电压/电流只有一相,其标称频率为50Hz或60Hz的标称电压。

4. 三相逆变器:三相逆变器将直流电转换为三相电源。三相电源提供三路相交均匀分离的交流电。在输出端产生的所有三个波的幅度和频率都相同,但由于负载而略有变化,而每个波彼此之间有120度的相移。

5. 线路换向逆变器:线路换向逆变器是那些通过交流电路的线电压来获得电压的逆变器。当SCR中的电流经历零特性时,器件迅森被关闭。这种换向过程称为线路换向,而基于此原理工作的逆变器称为线路换向逆变器。

6. 强制换向逆变器:强制换向逆变器中,电源不会出现零点。这就是为什么需要一些外部资源来对设备进行整流的原因。这种换向过程称为强制换向,而基于此过程的逆变器称为强制换向逆变器。

7. 串联逆变器:串联逆变器由一对晶闸管和RLC(电阻、电感和电容)电路组成。一个晶闸管与RLC电路并联,一个晶闸管串联在直流电源和RLC电路之间。这种逆变器被称为串联逆变器,因为负载在晶闸管的帮助下直接与直流电源串联。

8. 并联逆变器:并联逆变器由两个晶闸管、一个电容器、中心抽头变压器和一个电感器组成。晶闸管用于为电流流动提供路径,而电感器用于使电流源恒定。这些晶闸管的导通和关断由连接在它们之间的换向电容器控制。它之所以被称为并联逆变器,是因为在工作状态下,电容器通过变压器与负载并联差正。

9. 半桥逆变器:半桥逆变器需要两个电子开关才能工作。开关可以是MOSFET、IJBT、BJT或晶闸管。带有晶闸管和BJT开关的半桥需要两个额外的二极管,纯电阻负载除外,而MOSFET具有内置体二极管。

10. 全桥逆变器:单相全桥逆变器具有四个受控开关,用于控制负载中电流的流动方向。该电桥有4个反馈二极管,可将负载中存储的能量反馈回电源。

11. 三相桥式逆变器:为了从存储设备或其他直流电源运行重负载,需要三相桥式逆变器。工业和其他重负载需要三相电源,这种逆变器能够提供这种需求。

逆变电路都有哪些

逆变电路的种类及其解释:

一、基本逆变电路类型

1. 单相半桥逆变电路:采用两个开关器件交替导通,将直流电转换为交流电。这种电路结构简单,适用于功率较小的场合。

2. 单相全桥逆变电路:使用四个开关器件组成全桥结构,能够提供更高的功率输出。广泛应用于交流电源需求较高的场合。

3. 三相逆变电路:用于产生三相交流输出,适用于需要三相电源的设备。

4. 组合逆变电路:将多种基本逆变电路组合在一起,实现更复杂的电源转换需求。如多重逆变器并联或串联的组合方式。

二、详细解释

单相半桥逆变电路是较为基础的逆变电路形式之一。它由两个开关管和两个二极管组成,通过开关管的交替导通和关断,使得直流电在输出端形成交流波形。由于结构较为简单,它的功率相对较小,通常应用于一些中小功率的电子设备中。

单相全桥逆变电路在结构上与半桥电路有所不同,它使用了四个开关管,能够实现更高的功率输出。全桥电路能够提供更稳定的输出电压和电流波形,因此在需要较高功率输出的场合中得到广泛应用。

三相逆变电路主要用于产生三相交流电输出,适用于电机驱动等需要三相电源的设备。它能够提供平衡的三相电流,满足工业领域中的大多数应用需求。

组合逆变电路是根据具体的应用需求,将多种基本逆变电路组合在一起形成的。通过并联或串联的方式,可以实现更复杂的电源转换功能,满足特定的电力需求。这种电路形式在高性能的电力电子设备中得到广泛应用。

以上就是对逆变电路种类的简单而直接的描述。不同的逆变电路形式各有其特点和应用领域,在实际应用中需要根据具体需求选择合适的电路形式。

单相电源的逆变器有哪几类?

1.单端的,分反激和正激两种吧。反激的是在开关导通时先将能量送到电感,开关断开时再将能量送至负载;正激的是在开关导通时就把能量送至负载。

但都是一次测加的开关元件,缺点很明显:电源侧不连续,谐波含量大,对电源不利。

2推挽的:比单端好些,电源侧连续。但是,中间抽头不好做,提高制作成本。

3半桥和全桥:在输出电压相同的情况下,半桥逆变的每个管子承受的反压是全桥的两倍。增加成本。。

单相逆变器的电路原理

单相逆变器的工作原理是通过功率半导体开关器件的开关作用,将直流电转化为交流电。其基本电路有推挽式、半桥式和全桥式三种,尽管结构各异,但核心原理相同。通过控制电路周期性地发送开关脉冲,驱动器件交替导通和关断,再经变压器调整电压后,输出符合要求的交流电。

1. 推挽式逆变电路由两只共负极的功率开关和一个中心抽头变压器组成,交替工作产生交流电。优点是控制简单,但效率较低,不适合高电压和感性负载。

2. 半桥式逆变电路由开关管、储能电容和耦合变压器构成,通过交替切换实现交流输出。此电路结构简单,适合高频逆变,但对电容容量要求高,成本增加。

3. 全桥式逆变器通过4只功率开关实现更稳定的交流输出,克服了推挽式不足,但需要大功率变压器。在实际应用中,小功率逆变器多采用单级变换,大功率则采用多级电路结构。

随着技术进步,新型逆变器采用高频开关技术和软开关技术,如采用20kHz以上的高频逆变,不仅提高了功率密度,还降低了体积和重量。逆变效率可达90%以上,多采用3级电路结构,先高频逆变,再升压整流,最后工频逆变为市电电压。

逆变器的输出波形有方波、阶梯波和正弦波,各有优缺点。方波逆变器简单便宜,但噪声大、效率低;阶梯波逆变器噪音低、效率高,但波形有失真,不适于精密设备;正弦波逆变器性能最好,但复杂昂贵,是光伏并网发电的理想选择。

几种基础的单相电压型逆变电路及其详细运行原理

单相桥式逆变电路的基本工作原理涉及开关控制负载电压的正负,实现电压的逆变。在电阻负载下,负载电流与电压同相位;阻感负载下,电流基波滞后于电压,电流变化非瞬时,反映在电阻上的电压波形跟随阻感负载电流变化。半桥逆变电路结构简单,工作原理包括电流方向改变、能量反馈、负载电流续流过程,二极管在此发挥反馈或续流作用。全桥逆变器与半桥相似,输出为方波,其傅里叶级数展开仅含正弦项的奇次谐波。时域分析下,电流变化根据开关状态计算,输出电流稳态值为初始电流与时间的函数。全桥逆变电路的移相电压调节可通过改变开关信号的导通顺序实现输出电压的调整,结合傅里叶级数展开分析,输出电压的有效值随移相角度减小而降低,有效降低谐波含量。选择性谐波消除(SHE)是一种通过移相实现特定谐波消除的技术,也是脉冲宽度调制(PWM)的一种应用。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言