Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

三相pwm逆变器仿真

发布时间:2025-03-06 07:40:01 人气:



三相pwm逆变器的基本原理

1. 三相PWM整流器的工作原理主要涉及电流的转换过程。

2. 这种电路的核心功能是将三相交流电(AC)转换为直流电(DC),同时尽量减少电流的脉动。

3. 在三相PWM整流器中,交流电通过整流器被转换成脉冲宽度调制(PWM)信号,这个过程称为电流转换。

PLECS 应用示例(78):三相电压源逆变器(Three-Phase Voltage Source Inverter)

三相电压源逆变器(VSI)模型展示了一个从直流电压源产生交流电流和电压的逆变器电路。此模型设计用于实现10千瓦的额定功率,并提出了三种不同的脉宽调制(PWM)方案来控制VSI输出。

直流电压源提供700伏的电压,代表系统中的电池、太阳能阵列或整流器。逆变器连接到230Vrms、50Hz的低压电网,电网表示为刚性交流电压源。并网电抗为基础阻抗的10%,并包含小电阻来模拟电感器损耗。电感器电流被初始化为单位功率因数下10kW的期望额定功率,以避免启动期间的瞬态。

可配置子系统“控制器Controller”包含三种常见的PWM方法:正弦PWM、空间矢量(SV)PWM和滞后PWM。选择不同的调制器类型将呈现不同的控制参数。通常,VSI输出端电压或参考电流将使用闭环控制方法动态计算,但在模型中使用固定值。正弦和SV PWM配置中,参考信号是VSI输出端子处的期望平均电压,VSI输出电流与电网电压相位差决定了输出电压幅度和角度。正弦PWM实现使用对称PWM组件,其采样参数配置对调制指数输入进行采样的不同方式。滞后PWM是一种电流控制的PWM方案,调节逆变器的输出电流至恒定迟滞带内的参考电流。

模型配置了运行多个实验,比较每个调制器的性能。通过检查输出波形、总谐波失真(THD)、谐波频谱分析和磁滞带,可以比较每种调制策略产生的谐波。

通过比较,发现SV PWM在输出端产生的谐波失真较小,与相同开关频率的正弦PWM相比。正弦PWM和SV PWM方案的主谐波以开关频率的整数倍为中心,而磁滞PWM产生的谐波是非周期性的,并在谐波频谱中具有频率含量。

模型讨论了无调节三相VSI的运行,并实现了三种调制技术,比较了每种调制策略产生的谐波。此模型授权英富美(深圳)科技有限公司提供翻译与发表,所有权属于瑞士商Plexim GmbH所有。如有任何用途,请先获得所有权人允许。

三相逆变器的原理是如何

逆变器的工作原理是将直流电能转换为交流电能。它首先将Adapter输出的12V直流电压转换为高频高压交流电。这个过程和Adapter部分都广泛使用了脉宽调制(PWM)技术。核心部分均采用了PWM集成控制器,Adapter使用了UC3842,而逆变器则采用了TL5001芯片。TL5001的工作电压范围在3.6至40V之间,内置误差放大器、调节器、振荡器、PWM发生器(带死区控制)、低压保护回路以及短路保护回路等。

三相逆变器产生的交流电压为三相,即AC380V。三相电是由三个频率相同、振幅相等、相位依次互差120°的交流电势组成。

该逆变器具有以下功能特点:

1. 使用CPU控制,输出高品质、智能化正弦波,这是本产品的独特特点。

2. 设计了智能开关机功能,便于操作。

3. 具备抗干扰保护,包括浪涌保护。

4. 当市电R相正常时,电池能够自动充电。

5. 当市电缺相或多相,以及三相插座有问题,逆变器会在电池模式下工作。

6. 当逆变器在电池模式下工作时,如果有一相或多个相位不存在,逆变器将不输出,不能带载。

- 百度百科-逆变器

- 百度百科-三相逆变器

三相STATCOM使用D-Q控制的三相STATCOM技术三相VSI STATCOM为R-L负载提供无功功率(Simulink实现)

本文旨在探讨三相静态同步补偿器(STATCOM)技术的实现,特别关注基于D-Q控制的三相STATCOM技术,用于为R-L负载提供无功功率。Simulink平台被用于模拟和验证这一技术的可行性。首先,构建模型以集成关键组件,包括三相电压源、R-L负载模型、三相PWM逆变器、D-Q变换模块、PI控制器、逆D-Q变换模块以及三相逆变器。

模型设计如下:

三相电压源:模拟电网电压。

R-L负载模型:用于模拟负载的电阻和感性部分。

三相PWM逆变器模型:将DC电压转换为三相交流电压。

D-Q变换模块:将三相信号转换为D-Q坐标系信号。

PI控制器:计算并调节STATCOM的控制信号,包括无功功率参考和电压调制指令。

逆D-Q变换模块:将D-Q坐标系信号转换回三相信号。

三相逆变器模型:将D-Q坐标系信号转换为三相交流电压输出。

通过这些组件的集成,确保信号流正确,并设定适当的参数。实现D-Q控制主要步骤包括:

使用三相电压源提供电网电压信号。

利用D-Q变换模块将三相电压信号转换为D-Q坐标系信号。

通过PI控制器计算STATCOM的控制信号,以满足无功功率需求。

逆D-Q变换模块将D-Q坐标系信号转换为三相信号。

三相逆变器模型将三相信号转换为输出的三相交流电压。

输出的三相交流电压与R-L负载相连,以提供无功功率。

在实现过程中,重点在于设计合适的反馈回路和控制参数,以确保STATCOM功能的实现。在负载端,无功功率需求由STATCOM提供,仅从电网获取有功功率。

通过Simulink实现这一技术,可以直观地验证其性能和稳定性,为实际应用提供理论依据和实践指导。

参考文献部分列举了相关研究,为本文的理论基础和实现方法提供了支持。

Simulink实现

说明一下电机控制的逆变器是如何通过pwm技术调整输出三相交流电的频率和电压

一、复合型AC-AC电路

复合型AC-AC电路能够实现三相输出电压的幅值和频率的同时改变。这种电路在交流电机调速、变频器和其他需要调节电压和频率的应用中非常重要。

二、如何改变幅值和频率

1. 改变幅值:

幅值的改变通常通过脉冲宽度调制(PWM)技术实现。控制电路将输入信号转换为PWM信号,通过调整脉冲宽度来控制输出电压的幅值。具体操作是,控制电路接收输入信号,并将其转换为脉冲信号,随后通过改变脉冲宽度来调整输出电压的幅值。

2. 改变频率:

频率的改变则通常通过变频器实现。控制电路首先将输入电源转换为直流电源,然后将直流电源转换为频率可调的交流电源,以此来控制输出电压的频率。具体来说,控制电路接收到输入电源,并将其转换为直流电源,随后再将直流电源转换为频率可调的交流电源,从而实现输出电压频率的控制。

三、需要注意的问题

复合型AC-AC电路的控制电路设计复杂,需要精确的控制算法和电路设计。此外,电路在实际运行中可能会遇到噪声、温度等问题,因此在设计和使用时需要特别注意这些问题。

四、举例说明

以一种基于PWM和变频器的电路设计为例,可以说明如何实现三相输出电压幅值和频率的同时改变。该电路主要由PWM模块、直流-交流变换模块和变频器模块组成。

1. PWM模块:

PWM模块负责控制输出电压的幅值。它接收控制信号,并将输入电压转换为PWM信号。通过调整PWM信号的占空比,可以实现输出电压幅值的控制。

2. 直流-交流变换模块:

直流-交流变换模块负责将PWM信号转换为交流电压。它接收PWM信号和直流电源,并使用逆变器将直流电源转换为可控制的三相交流电压输出。

3. 变频器模块:

变频器模块负责控制输出电压的频率。它接收控制信号,并将输入电源转换为频率可调的交流电源。变频器模块可以采用多种技术实现,如电压-频率(V/F)控制技术或矢量控制技术。

通过上述三个模块的协同工作,可以实现三相输出电压幅值和频率的同时改变。例如,通过增加PWM信号的占空比来增加输出电压的幅值,或者通过改变变频器的频率来改变输出电压的频率。

三相PWM整流KPWM的具体含义是什么啊!!!

1. kPWM 是PWM逆变器的等效增益,表示为 kPWM = Ud/Ut,其中 Ud 是直流母线电压,Ut 是三角波幅值。kuf 和 kif 分别是输出电压和电容电流的反馈系数;Δu 是扰动输入,包括死区时间带来的影响和直流侧电压波动等;io 是负载电流。

2. 在电力系统中,电压和电流应保持完美的正弦波。然而,由于非线性负载的影响,实际的电网电压和电流波形往往存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题。因此,采取措施限制这些对电网和其它设备的影响是非常必要的。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。

3. 电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。

4. 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。

5. 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。

6. PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt和dv/dt。

7. PWM整流器根据主电路中开关器件的多少可以分为单开关型和多开关型;根据输入电源相数可以分为单相PWM整流电路和三相整流电路;根据输出要求可以分为电压源和电流源型。

8. 控制技术是PWM高频整流器发展的关键。要使PWM整流器工作时达到单位功率因数,必须对电流进行控制,保证其为正弦且与电压同相或反相。根据有没有引入电流反馈可以将这些控制方法分为两种:引入交流电流反馈的称为直接电流控制(DCC);没有引入交流电流反馈的称为间接电流控制,间接电流控制也称为相位幅值控制(PAC)。

9. 通过上述分析,PWM整流技术的应用会越来越广泛,其发展也会呈现出多种趋势,但可主要归结为三个方面:功率器件、主电路拓朴和控制方法。

10. (1)新型全控型器件的发展。器件是PWM整流技术赖以实现的基础,新技术的出现和新材料的应用,必然会产生更新、更好的功率器件,从而推动PWM整流技术的发展。

11. (2)主电路拓朴。PWM整流器的最大优势就是对电网的影响较小,为了进一步降低影响,提高功率因数,人们必然会对整流器的拓朴结构进行改进,现在已经出现五电平、七电平结构,随着功率器件和应用水平的提高,必然会有更新、更好的电路拓朴结构出现。

12. (3)控制方法。一方面,主电路拓朴的多样化,必然会引起控制方法的变异,甚至会产生更新、更简单的控制方法;另一方面,现代控制理论和计算机技术的发展也为新的方法的出现奠定了坚实的基础,现在状态反馈控制、变结构控制已经开始应用到PWM整流器的控制中来。

SVPWM学习

摘要:电压空间矢量调制技术(SVPWM)源于电机控制领域。它通过控制逆变器输出波形,实现与交流电机产生圆形磁场的同步,从而提升输出波形质量。SVPWM也被称作磁链跟踪控制,其核心是在静止坐标系下,通过线性组合逆变器可输出的电压空间矢量和作用时间,逼近期望的电压空间矢量。

1 空间电压矢量的定义

如图1所示,A、B、C三个轴分别表示空间静止的坐标系。电压空间矢量的定义源自交流电机分析。电机定子电压u1、u2、u3的方向始终在A、B、C轴上,随时间按正弦规律变化,三相电压空间矢量如图1所示可合成一个旋转矢量。其幅值大小为相电压的1.5倍,频率随电源频率变化。用以下公式表示。

若取A轴为复平面的实轴,则B轴和C轴的位置分别为:

三相正弦电压:

这意味着三相对称正弦电压所合成的空间矢量是一个在空间中等幅恒速旋转的矢量。合成的空间电压矢量的幅值是原来的正弦量幅值的1.5倍。通常,希望空间电压矢量与原来三相对称正弦量的幅值相同,于是,空间矢量可以定义为:

2 三相感应电机定子端电压与定子磁链矢量之间的关系

当电机转速不是很低时,定子电阻上的压降对于定子磁链产生的感应电动势来说较小,可以忽略。

在电机学中,当电机由三相平衡正弦电压供电时,电动机定子磁链幅值恒定,其空间矢量以恒速等幅旋转,其矢端的运动轨迹呈圆形,一般称为矢量圆。

定子磁链旋转矢量可用下式表示:

图2 磁链圆

当磁链幅值一定时,电压空间矢量的大小与供电电压频率成正比,其方向与磁链矢量正交,即磁链圆的切向方向。当磁链矢量在空间旋转一周时,电压矢量也连续地按磁链圆的切线方向运动2弧度,其轨迹也是圆形的。这样,电动机旋转磁场的轨迹问题就可转化为电压空间矢量的运动轨迹问题。

3 三相全桥电压型PWM逆变器的八个电压空间矢量

图3 三相桥式逆变电路

电压源型PWM逆变器同一桥臂的上、下开关管驱动信号互补。这三个桥臂独立,每个桥臂有两种开关状态,2*2*2=8,三相全桥电压型PWM逆变器总共可以输出8个电压空间矢量。

(1)开关模式分析分析

(合成的电压空间矢量)

其他七个空间电压矢量都可以按照以上的分析,得到空间电压矢量合成图。

(2)三相全桥电压型PWM逆变器共可输出8个电压空间矢量,其中有6个有效矢量,2个零矢量。有效电压空间矢量的幅值为2/3.

图4 基本电压空间矢量图

4 正六边形空间旋转磁场

图5 正六边形的旋转磁场

6个有效空间电压矢量,在一个输出基波电压周期内各自依次连续作用1/6周期,逆变器运行于这种状态时会得到一个正六边形的旋转磁场。六个有效电压矢量各自连续作用1/6T,显然不能得到一个圆形的旋转磁场。所以这种六拍阶梯波逆变器的性能较差。

电机转动形成圆形的旋转磁场。如何使逆变器输出的正六边形的旋转磁场变成一个圆形旋转磁场?

图6 圆形的旋转磁场

(1)、图4中磁链矢量为何与电压矢量不垂直?

输入电压不是正弦,得到的磁链不是圆形旋转的,其幅值也在变化,所以相位就不再是相差.

(2)、SVPWM作用和目标?

在每个1/6T之内,磁链的变化为一段圆弧,而不是一段弦。真正的圆弧肯定是得不到的,除非用理想的正弦电压供电。但这是目标,可不可以设法尽可能地逼近这个目标?可以用一段一段的弦来逼近圆弧。分段越多,越接近圆弧。如何得到一段一段的弦?SVPWM。

5 电压空间矢量调制

如图4可知,8个电压矢量形成一个六边形,这和电机原理的圆形磁场还相差很远,所以电压输出效果肯定不好。众所周知,矢量之间可以进行合成,那么我们就用8个电压矢量进行合成,得到想要的电压矢量从而可以得到接近圆形的电压矢量。这就是电压空间矢量(SVPWM)的基本思想。

用弦去逼近圆弧,要知道弦代表的物理意义是磁链矢量的变化量,或者说是期望的电压矢量冲量,这是第一步逼近。每一段弦是期望的电压矢量冲量,可以看作是期望的电压矢量持续作用一个开关周期得到的。也就是说,每一段弦对应的时间是一个开关周期。开关周期越小,即开关频率越高,在一个基波周期内,圆周上的分段越多,得到的磁链轨迹越接近一个圆。

其次,逆变器的输出只有6个有效的电压空间矢量和2个零矢量,没有期望的电压空间矢量。只能用这8个矢量中的几个各自作用一段时间的冲量去逼近期望矢量作用时间的冲量,这是第二个逼近。

6 SVPWM实现过程

从上节的分析可知,哪几个电压空间矢量和其作用的时间是SVPWM的两个根本的问题。所以要实现SVPWM,共分为两步:

6.1 电压矢量的作用时间

图7 合成的电压矢量

从图7,可以将基本电压矢量作用时间分解到静止坐标系坐标系:

联立以上公式,可以得到:

以上是在扇区1中对电压空间矢量作用的时间的求解。在其他扇区,求解过程一样,这里就步一一阐述。

6.2 扇区判断

定义3个变量X、Y和Z。

图7 扇区划分

通过上节的公式推导,合成的空间电压矢量在基本电压矢量Us和u1、u2两者之间的扇区1中,求出t1、t2。

6.3 基本电压矢量的作用顺序

(1)五段式

(2)七段式

7 小结

综合以上的理论分析可知,要实现SVPWM需要解决三个方面的问题。

(1)、电压矢量的作用时间(伏秒原则);

(2)、相邻的两个基本电压矢量作用时间和零矢量作用时间在一个载波周期内的排列顺序(也就是发波的方式是五段式还是七段式);

(3)、判断参考电压矢量旋转到哪个扇区即扇区的判断。

7 仿真搭建

图8 SVPWM仿真模型

PWM逆变器是什么?

1. PWM逆变器在电机驱动中扮演着关键角色,它通过调节脉冲宽度来控制电机速度和扭矩。然而,这一过程中可能会产生共模电压,它通过电机内部的寄生电容引起漏电流。

2. 漏电流如果过大,不仅可能触发电机保护电路的误动作,还会产生电磁干扰(EMI),干扰电网中其他设备的正常运行。同时,过大的轴电压和轴承电流会加速电机轴承的磨损,降低系统的可靠性。

3. 为了抑制共模电压,传统的做法包括转轴接地、轴承绝缘和使用导电润滑剂等。尽管这些方法能够在一定程度上降低轴电流,保护电机轴承,但共模电压本身并未被彻底消除。

4. 在电机负载运行时,共模电压依然存在,并通过负载轴承产生破坏性电流。因此,滤波器被引入以减少逆变器输出中的谐波成分。尽管无源滤波器在降低过电压影响方面效果显著,但它们对于变化着的载波频率响应有限。

5. 近年来,有源滤波器作为一种消除共模电压的新型解决方案被提出。例如,Alexander Julian提出的四相逆变器和Annette Jouanne提出双桥逆变器(DBI)等方法,尽管能够减少共模电压,但它们自身也存在如增加开关损耗和谐波失真、需要额外的驱动设备和特定定子绕组配置等限制。

6. 文中提出的有源滤波器结构简单,易于控制,通过产生与PWM逆变器输出电压幅值相等、相位相反的共模电压,有效消除了感应电机端的共模电压问题。仿真和实验结果证明了这种结构的有效性,为提高PWM逆变器系统的可靠性和性能提供了新的途径。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言