发布时间:2025-02-25 22:10:07 人气:

PWM的逆变原理是什么
PWM脉宽调制是一种通过改变脉冲宽度来控制输出电压的技术,同时通过改变脉冲的调制周期来控制输出频率。这种技术使调压和调频两个作用能够协调一致,并且与中间的直流环节无关,从而加快了调节速度,改善了动态性能。由于输出等幅脉冲只需恒定直流电源供电,因此可以使用不可控整流器代替相控整流器,大大改善了电网侧的功率因数。PWM逆变器能够抑制或消除低次谐波,并且由于使用自关断器件,开关频率可以大幅度提高,使得输出波形非常接近正弦波。
PWM变频电路具有以下特点:可以得到接近正弦波的输出电压;整流电路采用二极管,获得接近1的功率因数;电路结构简单;通过对输出脉冲宽度的控制改变输出电压,加快了变频过程的动态响应。目前,通用变频器几乎都采用PWM控制方式,因此有必要介绍PWM控制的原理。
PWM基本原理是通过对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需的波形。在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次斜波谐波少。根据采样控制理论,冲量相等而形状不同的窄脉冲加在具有惯性的环节上,其效果基本相同。冲量即指窄脉冲的面积,这里所说的效果基本相同,是指该环节的输出响应波形基本相同。
根据上述理论,可以用不同宽度的矩形波来代替正弦波,通过对矩形波的控制来模拟输出不同频率的正弦波。例如,将正弦半波波形分成N等份,就可将正弦半波看成由N个彼此相连的脉冲组成的波形。这些脉冲宽度相等,都等于π/N,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果将上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。可以看出,各脉冲宽度是按正弦规律变化的。根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。
在PWM波形中,各脉冲的幅值是相等的。要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可。因此,在交-直-交变频器中,整流电路采用不可控的二极管电路即可,PWM逆变电路输出的脉冲电压就是直流侧电压的幅值。根据上述原理,在给出了正弦波频率、幅值和半个周期内的脉冲数后,PWM波形各脉冲的宽度和间隔就可以准确计算出来。按照计算结果控制电路中各开关器件的通断,就可以得到所需要的PWM波形。
逆变器的工作原理是怎样的?
PWM(脉宽调制)是一种数字信号编码技术,它使用高分辨率计数器来调制方波信号的占空比,以此来模拟信号的电平。在PWM信号中,直流供电要么完全接入(开启),要么完全断开(关闭),因此电压或电流源以一系列通断脉冲的形式加到模拟负载上。只要带宽足够宽,任何模拟值都可以通过PWM进行编码。例如,可以用一系列等幅不等宽的脉冲来代替正弦波,或者用矩形脉冲代替,这些脉冲等幅不等宽,中点重合,面积相等,宽度按正弦规律变化。SPWM(正弦波PWM)波形是一种脉冲宽度按正弦规律变化,且与正弦波等效的PWM波形。
PWM逆变器的三相功率级用于驱动三相无刷直流电机。为了使电机正常工作,电场必须与转子磁场之间的角度接近90度。通过六步序列控制,产生6个定子磁场向量,这些向量根据指定的转子位置进行改变。霍尔效应传感器用于检测转子位置,以提供6个步进电流给转子。功率级使用6个可以按特定序列切换的功率MOSFET来实现这一点。
在常用的切换模式中,MOSFET Q1、Q3和Q5进行高频切换,而Q2、Q4和Q6进行低频切换。当低频MOSFET开启且高频MOSFET处于切换状态时,会形成一个功率级。例如,如果L1和L2相位供电,而L3相位未供电,电流将流经Q1、L1、L2和Q4。当Q1关闭时,电感产生的额外电压会导致体二极管D2正向偏置,允许续流电流流过。当Q1开启,体二极管D2反向偏置,电流流经二极管,从N-epi到P+区,即从漏极到源极。为了改善体二极管的性能,研究人员开发了具有快速恢复特性的MOSFET,其反向恢复峰值电流较小。
在PWM逆变器电路中,电阻R2和电容C1用于设置集成电路内部振荡器的频率,而R1用于微调频率。IC的引脚14和11分别连接到驱动晶体管的发射极和集电极终端,同时引脚13和12连接到晶体管的集电极。引脚14和15输出180度相位差的50赫兹脉冲列车,用于驱动后续晶体管阶段。当引脚14为高电平时,晶体管Q2导通,进而使Q4、Q5、Q6从+12V电源连接到上半部分变压器T1,产生220V输出波形的上半周期。同理,当引脚11为高电平时,Q7、Q8、Q9导通,通过变压器T2产生下半周期电压,从而形成完整的220V输出波形。
在变压器T2的输出,电压通过桥式整流器D5整流,并提供给误差放大器的反相输入端PIN1。比较内部参考电压后,误差电压调节引脚14和12的驱动信号的占空比,以调整输出电压。电阻R9用于调节逆变器输出电压,因为它直接控制输出电压误差放大器部分的反馈量。二极管D3和D4作为续流二极管,保护晶体管在变压器T2初级侧产生的电压尖峰。R14和R15限制Q7的基极电流,R12和R13防止意外的开关ON下拉电阻。C10和C11用于绕过变频器输出噪声,而C8是稳压IC 7805的滤波电容。电阻R11限制通过LED指示灯D2的电流。
三相pwm逆变器的基本原理
1. 三相PWM整流器的工作原理主要涉及电流的转换过程。
2. 这种电路的核心功能是将三相交流电(AC)转换为直流电(DC),同时尽量减少电流的脉动。
3. 在三相PWM整流器中,交流电通过整流器被转换成脉冲宽度调制(PWM)信号,这个过程称为电流转换。
pwm原理是什么 pwm原理介绍
PWM原理的核心在于通过精确控制逆变电路中的开关装置,使其周期性地开启和关闭,从而产生一系列等幅值的脉冲信号。这些脉冲在输出波形的半个周期内密集分布,每个脉冲的持续时间虽然短暂,但它们的等效电压累积起来,形成了近似正弦波形的平滑曲线,消除了高次谐波,呈现出低频特性。通过调整每个脉冲的宽度,PWM不仅可以调节逆变器电路的输出电压,还能同步改变其输出频率,实现对电力的精细调控。
PWM全称脉宽调制,是一种模拟控制策略。它通过微调晶体管(如BJT或MOSFET)的基极或MOS管的栅极偏置,精确控制其导通时间。这种时间的微妙变化,使得晶体管或MOS管在开关状态之间转换,进而实现了开关稳压电源输出电压的连续可调,为电子设备的功率管理提供了灵活的解决方案。
PWM逆变器是什么?
1. PWM逆变器在电机驱动中扮演着关键角色,它通过调节脉冲宽度来控制电机速度和扭矩。然而,这一过程中可能会产生共模电压,它通过电机内部的寄生电容引起漏电流。
2. 漏电流如果过大,不仅可能触发电机保护电路的误动作,还会产生电磁干扰(EMI),干扰电网中其他设备的正常运行。同时,过大的轴电压和轴承电流会加速电机轴承的磨损,降低系统的可靠性。
3. 为了抑制共模电压,传统的做法包括转轴接地、轴承绝缘和使用导电润滑剂等。尽管这些方法能够在一定程度上降低轴电流,保护电机轴承,但共模电压本身并未被彻底消除。
4. 在电机负载运行时,共模电压依然存在,并通过负载轴承产生破坏性电流。因此,滤波器被引入以减少逆变器输出中的谐波成分。尽管无源滤波器在降低过电压影响方面效果显著,但它们对于变化着的载波频率响应有限。
5. 近年来,有源滤波器作为一种消除共模电压的新型解决方案被提出。例如,Alexander Julian提出的四相逆变器和Annette Jouanne提出双桥逆变器(DBI)等方法,尽管能够减少共模电压,但它们自身也存在如增加开关损耗和谐波失真、需要额外的驱动设备和特定定子绕组配置等限制。
6. 文中提出的有源滤波器结构简单,易于控制,通过产生与PWM逆变器输出电压幅值相等、相位相反的共模电压,有效消除了感应电机端的共模电压问题。仿真和实验结果证明了这种结构的有效性,为提高PWM逆变器系统的可靠性和性能提供了新的途径。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467