发布时间:2025-02-23 21:40:27 人气:
三电平逆变有什么优势?
英飞凌工程师为您解答:三电平逆变器拓扑的优势
随着对逆变器的功率密度、效率、输出波形质量等性能要求的提升,中点钳位型三电平拓扑逆变器已经广泛应用于光伏、储能、UPS、APF等场合。典型的三电平拓扑有二极管型NPC、Conergy NPC、有源NPC。
相比于传统的两电平逆变器,三电平逆变器具有以下优势:
损耗减小,开关频率提升,系统成本降低:如NPC1拓扑中开关器件的电压可减小为原来的一半,大幅降低器件开关损耗,可通过提高母线电压减小输出端的电流,减少输出线缆成本。
器件可靠性提升:在同样电压等级的系统中,三电平拓扑中器件承受的阻断电压降低,提升器件的可靠性。
改善电磁干扰EMI:由于开关过程中器件的dv/dt大幅降低,系统电磁干扰得到改善。
当然,三电平拓扑也存在一些劣势,如器件成本增加、控制算法复杂度提升、损耗分布不均衡和中点电位波动等问题。但得益于其独特优势,三电平拓扑在众多场合得到广泛使用。
常见三电平拓扑介绍
NPC 1
电流路径:蓝绿色线条为导通电流路径,紫色线条为对应的零电平换流路径。功率因数为+1对应①和②两种模态,功率因数为-1对应③和④两种模态。
损耗分布:以F3L225R12W3H3器件为例,在逆变工况时,NPC1的损耗主要集中在T1/T4管,包括导通损耗和开关损耗;在整流工况下,损耗主要集中在D1/D4管和T2/T3管。
NPC 2
电流路径:在NPC2拓扑中,用一对共射极或共集电极的IGBT和反并联二极管代替NPC1二极管钳位的功能,T1/T4管承受全母线电压,T2/T3管承受半母线电压。
损耗分布:在NPC2拓扑中T1/T4为高压器件,开关损耗较大,但由于电流路径上的开关器件数量减少,导通损耗更小,因此NPC2拓扑在中低开关频率的系统中效率更优。
ANPC
电流路径:ANPC拓扑通过拓展两条零电平换流路径,通过对零电平换流路径的选择和控制可以实现更均衡的损耗分布和更小的换流回路杂感。不同调制算法会产生不同的损耗分布。
英飞凌提供的产品
英飞凌提供适用于不同逆变器设计需求的功率器件,包括家用、商用和电站级逆变器。产品包含OptiMOS™、CoolMOS™、CoolSiC™ MOSFET、IGBT、Easy 1B/2B模块、功能性集成型产品EiceDRIVER™栅极驱动器IC和XMC™控制器等。
三电平Easy 1B/2B模块
Easy B系列模块提供600V、650V和1200V电压以及6A至200A电流。模块涵盖PIM和三相两电平全桥配置,以及桥式整流器、半桥、H桥式、三电平全桥和三电平单相模块。模块采用灵活网格引脚与新型IGBT芯片技术相结合,易于集成PIM配置,并采用新型TRENCHSTOP™ IGBT7技术,在Easy 1B封装中集成25A PIM。
更多信息
若您想寻找更多应用、产品信息或想联系我们购买产品,请点击此处填写您的个人信息及需求,我们将安排专人后续跟进。
NPC三电平逆变器SVPWM调制基本原理
本文详细阐述了NPC三电平逆变器SVPWM调制的基本原理。首先介绍NPC三电平逆变器的结构,每相桥臂能够输出三种电压状态,合成基本电压矢量。
接着,分析基本电压矢量的分类与作用,指出零矢量、大矢量不引起中点电压偏移,而小矢量对中点电压偏移有显著影响,成对小矢量作用效果相反。
随后,讨论开关序列分配策略,将基本电压矢量所在平面分为六个大扇区,并进一步细分为六个小扇区,以减小小矢量对中点电压偏移的影响。同时,提出编码规则以最小化开关次数,优化调制过程。
接着,阐述开关时间计算方法,遵循伏秒平衡原理,以第一大扇区为参考,计算各小扇区的开关时间。
在调制信号生成部分,类比两电平SVPWM调制波与三角载波的比较方式,通过设置三角波幅值与调制波比较,生成PWM信号。
最后,介绍扇区判断方法,与两电平SVPWM调制类似。通过参考电压矢量旋转角度判断大扇区类型,并根据指定分界线判断小扇区。
文章还补充了两种实现方式:三电平SPWM调制和双载波SVPWM调制。其中,三电平SPWM调制通过比较调制信号与两种三角载波,实现桥臂输出状态的确定。双载波SVPWM调制则通过比较调制信号与上、下三角载波,直接得到桥臂输出状态。
多电平逆变电路主要有哪几种形式,各有什么特点
多电平逆变电路在现代电力电子技术中占据重要位置。常用的多电平逆变电路包括三种形式:三电平、五电平和七电平。它们的特点在于利用阶梯波形逼近正弦波。具体而言,三电平逆变器通过三个电压电平来近似正弦波,而五电平和七电平逆变器则通过更多的电平来提高逼近精度。
三电平逆变器相较于传统的两电平逆变器,能够提供更平滑的输出波形。它的优点在于降低了开关频率,减少了功率开关元件的损耗,降低了电磁干扰,提高了逆变器的效率。然而,三电平逆变器需要更多的功率开关元件,这增加了系统的复杂性和成本。
五电平逆变器在输出波形逼近精度方面更进一步,它通过五个不同的电平来逼近正弦波。这使得五电平逆变器在输出波形的平滑度和失真度方面优于三电平逆变器。然而,五电平逆变器的缺点是需要更多的功率开关元件,增加了系统的复杂性和成本。
七电平逆变器是最高级别的多电平逆变器,它通过七个不同的电平来逼近正弦波。七电平逆变器的优点在于输出波形的平滑度和失真度都非常高,能够提供接近理想的正弦波输出。然而,七电平逆变器需要更多的功率开关元件,增加了系统的复杂性和成本。
总的来说,多电平逆变器的优点在于能够提供更平滑的输出波形,降低开关频率,减少功率开关元件的损耗,降低电磁干扰,提高逆变器的效率。然而,多电平逆变器的缺点是需要更多的功率开关元件,增加了系统的复杂性和成本。
逆变器的控制策略是影响其性能的关键因素。在实际应用中,多电平逆变器的控制策略通常采用空间矢量调制技术。这种技术通过优化开关模式,使逆变器输出波形更加接近正弦波。空间矢量调制技术能够有效降低逆变器的谐波含量,提高其输出波形的正弦度。
单相三电平逆变器的特点
1. 单相三电平逆变器采用多电平输出技术,与传统的二电平逆变器相比,其输出波形更接近正弦波,谐波含量较低。
2. 该逆变器能够有效降低电磁干扰,因为其多电平输出特性减少了输出端的电压纹波,从而减轻了对其他电子设备的干扰。
3. 逆变器的效率得到提升,得益于多电平输出能够更好地匹配负载,减少了能量损耗。
4. 控制方面,单相三电平逆变器提供了更高的灵活性,允许通过精确的开关控制策略来实现对输出波形的精细调节。
为什么三电平逆变器的谐波含量比两电平逆变器的少?
英飞凌工程师解释了三电平逆变器相较于两电平逆变器在谐波含量较少的原因,通过分析逆变器的拓扑结构、工作原理以及损耗分布,揭示了三电平逆变器在输出波形质量、系统效率和器件可靠性方面的优势。
三电平逆变器输出的电压波形更加接近正弦波,具有更低的总谐波失真(THD),这是由于其额外的零电平通路,使得相电压可输出三个电平,从而减少了谐波成分。在损耗方面,三电平逆变器通过降低器件的阻断电压,提高了系统成本效率,尤其是在高频工况下,三电平逆变器的效率更优。
通过分析不同三电平拓扑结构(如NPC1、NPC2和ANPC)的工作模态和损耗分布,可以看到三电平逆变器的损耗主要集中在高压器件上,但每个器件承受的电压减少,从而降低了开关损耗。此外,三电平逆变器还能够改善电磁干扰(EMI),由于器件的dv/dt大幅降低,系统EMI得到改善。
尽管三电平拓扑存在一些劣势,如器件成本增加、控制算法复杂度提升、损耗分布不均衡和中点电位波动等问题,但其独特的优势在光伏、储能、UPS、APF等众多应用场合中得以广泛使用。通过优化调制策略和损耗分布,三电平逆变器的性能得到了进一步提升。
英飞凌提供的逆变器和其他创新产品在性能和效率方面表现出色,为各种应用提供了可靠的技术支持。如果您对逆变器产品有需求,欢迎访问英飞凌官网了解更多信息。如有任何具体需求或问题,欢迎您通过点击页面底部的链接填写信息,我们的专业团队将为您提供个性化服务和支持。
T型三电平逆变器工作原理
单相拓扑设计以4个IGBT、4个二极管、两个电容C1,C2和一个电感L为基础。假设C1和C2电压差相等,均为Vdc。通过二进制表示四个IGBT的状态,如T1,T2,T3,T4为1、1、0、0,则转换为开关状态C。T型三电平逆变器稳定模态包括C、6、3三种。模态C输出电压Vdc,模态6输出0电压,模态3输出-Vdc。考虑死区后,存在4、2两种状态,死区状态4和死区状态2输出高阻。T型三电平的电压转换流程为Vdc->0->-Vdc->0->Vdc,其切换状态在图2中表示,**为死区状态切换,蓝色为稳态。
T型三电平拓扑中的IGBT控制转换逻辑图在图2中编写。特别注意,拓扑中所有开关状态的循环切换是关键。输出Vdc到0状态变化瞬态,开关状态从C(1100)到状态4(0100)时,IGBT的C-E电压与输出电压的关系以及电流路径在图中显示。关断过程中T1管的Vce两端产生尖峰电压(换流引起)。从4状态到6状态、2状态到6状态、6状态到4状态、4状态到C状态的切换过程,IGBT的C-E电压与输出电压的关系以及电流路径同样在图中给出。小结,IGBT部分在关断时产生电压尖峰,T1和T4管的风险较低,T2和T3管的风险较高。二极管部分在反向恢复时产生峰值功率,D1和D4管的功率较小,D2和D3管的功率较大,需要特别关注。
三电平SVPWM基本理论(1)
一、三电平基本原理
三电平逆变器主要由T型NPC、二极管箝位型(I型NPC)和飞跨电容型(FC NPC)三种拓扑结构组成。
二、二极管箝位型分析
以A相为例,分析其工作原理。
1)Q1与Q3、Q2与Q4分别互补导通,形成电流流向负载或逆变器。
2)在Q1、Q2同时导通,Q3、Q4同时关断时,电流从逆变器流向负载,此时A点电位等于DC+,相当于Udc/2。
3)Q3、Q4同时导通,Q1、Q2同时关断时,电流从负载流向逆变器,此时A点电位等于DC-,相当于-Udc/2。
4)通过D1、Q2或D2、Q3导通,电流可以分别从逆变器流向负载或负载流向逆变器,此时A点电位等于中点电位O,相当于0。
三、开关状态与输出电压的关系
任意相可投入三个电平,通过开关函数定义电平状态,即相对于O点的电平。
四、电平定义与切换模式
对于任意相,电平状态有三种切换模式,形成对应的电平状态表达式。
五、输出线电压计算
任意相输出电压可通过线电压的计算公式得出,公式包含线电压与电平状态的矩阵关系。
六、负载相电压计算
在三相平衡条件下,根据负载相电压的计算公式,可以得出负载相电压与线电压之间的关系。
逆变器中提到的两电平逆变器,三电平逆变器中的电平是什么
在逆变器中,电平概念指的是用于信号传输或能量转换的电压级别。两电平逆变器设计简洁,仅提供两种电压级别:高或低,适用于低成本应用。相比之下,三电平逆变器提供三种电压级别,通过引入电压中点,实现更精细的电压控制,如图所示。
三电平逆变器相比两电平逆变器,在系统层面拥有显著优势:
1. **损耗减少、开关频率提升、成本降低**:例如在NPC1拓扑中,开关器件的电压降低至原来的一半,大幅降低了器件的开关损耗。提升开关频率后,可以减小输出滤波器的体积和成本。在功率等级不变的情况下,通过提高母线电压,可以减小输出端电流,降低输出线缆成本。
2. **器件可靠性提升**:在相同电压等级的系统中,三电平拓扑中的器件承受的阻断电压更低,从而提升了器件的可靠性。
3. **改善电磁干扰(EMI)**:三电平逆变器在开关过程中的dv/dt显著降低,有效改善了系统的电磁干扰。
尽管三电平逆变器存在器件成本增加、控制算法复杂度提升、损耗分布不均和中点电位波动等挑战,但其独特优势使得其在光伏、储能、UPS、APF等众多应用领域得到了广泛使用。下面将详细介绍常见的三电平拓扑:
- **NPC1拓扑**:通过优化电流路径和零电平换流机制,实现了损耗分布的优化和EMI的改善。在逆变工况中,NPC1的损耗主要集中在T1/T4管,而在整流工况中,主要损耗集中在T2/T3管和D5/D6管。仿真结果显示,在高频系统中,NPC1拓扑效率更优。
- **NPC2拓扑**:相较于NPC1,NPC2减少了二极管的数量,采用共射极或共集电极的IGBT和反并联二极管取代钳位二极管,从而降低了损耗,提高了中低开关频率下的系统效率。仿真表明,当电流等级和耐压相同,NPC2拓扑在中低开关频率下的总损耗低于NPC1拓扑。
- **ANPC拓扑**:通过替换钳位二极管为IGBT和反并联二极管,ANPC拓扑进一步优化了损耗分布,通过选择不同的零电平换流路径,实现了更均衡的损耗控制。ANPC的调制算法(ANPC-1、ANPC-2和ANPC-1-00)分别针对不同的损耗特性进行了优化。
英飞凌提供了丰富多样的功率器件,包括OptiMOS™、CoolMOS™、CoolSiC™ MOSFET以及IGBT,满足家用、商用到电站级大型项目的太阳能逆变器设计需求。此外,英飞凌的Easy 1B/2B模块和集成型产品如EiceDRIVER™栅极驱动器IC和XMC™控制器,提供了高集成度和功能性集成解决方案。
对于寻找更多应用、产品信息或购买产品的用户,英飞凌提供了在线信息填写表单,用户可以填写个人信息和需求,英飞凌将安排专人跟进。
三电平SVPWM学习
三电平SVPWM原理与性能优化
三电平SVPWM是一种逆变器技术,其相较于两电平SVPWM,具有更低的开关应力、更小的开关损耗、以及更接近正弦波的输出电压波形,主要得益于其调制算法的优化。模型设计与实现过程可关注公众号“浅谈电机控制”,留下邮箱,模型将发送至邮箱。
三电平逆变器结构与原理
三电平逆变器由3个桥臂组成,每个桥臂包含4个开关管,并带有中性线,通过不同开关组合实现三电平电压输出。具体原理图如图1所示。三电平每相电压有3个电平,通过27个电压矢量组合实现,每相电压同时为零时,输出电压矢量为零。
三电平SVPWM核心技术介绍
三电平SVPWM的核心在于扇区判断、区域判断与时间状态分配。在每个扇区内,根据参考电压矢量位置,划分出小扇区,判断其所在区域。选择短矢量作为每个采样周期的起始矢量,确保在电压矢量变化时,只有一对桥臂动作,避免反向转矩和脉动,实现高效控制。
三电平与两电平SVPWM波形对比
三电平SVPWM相较于两电平SVPWM,不仅在波形接近度、电压利用率、谐波含量上表现出优势,而且在开关应力和开关损耗上显著降低。三电平电路具有高效率、低EMI、适用于大容量高电压场合等优点,但同时存在开关器件数量增加、控制复杂性和电位不平衡问题。
总结
三电平SVPWM技术提供了在电机直接转矩控制中的高效性能,通过减少开关应力、降低损耗、优化输出波形等手段,实现对电机的精准控制。在应用中需权衡其优点与挑战,例如采用二极管钳位式作为主电路拓扑结构,以实现三电平逆变器的高效稳定运行。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467