发布时间:2025-02-21 23:30:20 人气:

南京正弦波逆变器推荐
随着人们对城市环境的日益关切,电动汽车的发展得到了一个难得的机遇。在城市交通中,电动大客车由于载量大,综合效益高,成为优先发展的对象。电动大客车大都采用三相交流电机,由于电机功率大,三相逆变器中的器件需要承受高电压和大电流应力的作用,较高的dv/dt又使电磁辐射严重,并且需要良好的散热。而采用多重串联型结构的大功率逆变器则降低了单个器件承受的电压应力,降低了对器件的要求;降低了dv/dt值,南京正弦波逆变器推荐,南京正弦波逆变器推荐,减少了电磁辐射,南京正弦波逆变器推荐,器件的发热也较大减少;由于输出电平种类增加,控制性能更好。逆变器又称电源调整器。南京正弦波逆变器推荐
状态反馈控制:状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。合肥逆变器推荐逆变器两次开机间隔时间不少于5秒。
安全与隔离是普通商用电源与医疗电源的一个重大差别。通常,除了一些实验分析类仪器,医疗设备大多安装在病床或手术台附近,离人和操作者的距离比较近,外壳常常会被触及到。医疗设备内部有各种各样的强,弱电的部件,如果强弱电之间的隔离或者是外壳材料绝缘有问题,就会非常危险。安全测试方面一般医疗设备电源都必须得到UL60601-1、C-UL、EN60601-1等安全认证。输入输出端必须要4,000V以上的隔离电压,而且要求对地漏电流低,符合安规爬电距离要求。而对于强电部分需采用双重绝缘,尤其有可能与设备外壳接触的部分更要加强绝缘设计。
1.选择车载电源除了价格因素外,主要需要考虑的是车载电源对输入电压的要求和输出功率的大小,此外由于各种用电器的功率差别很大,因此要根据使用需求选择车载电源,原则是够用为主。2、根据使用的电器的种类不同需选择合适的车载电源,对于日常的阻性用电器选择方波、修正波、正弦波的都可以合使用,对于感性的用电器则必须选择正弦波逆变器了。3、方波/修正波逆变电源不能带感性负载和容性负载,不能带动空调,冰箱,也难以为高质量的音响电视提供电源。严格上讲方波/修正波逆变电源会影响用电器的使用寿命,这些问题在使用正弦波逆变器时不会出现。逆变器用户可以使用各种形式的电源为交流负载供电。
光伏逆变器的效率影响着光伏发电系统的整体效率,其安装事项不可忽视,需有专业的操作,以确保提供光伏逆变器适宜稳定的运行环境。选择好安装位置后,如何安装光伏逆变器需要确认以下几点:1、在安装前首先应该检查逆变器是否在运输过程中有无损坏。2、在选择光伏逆变器安装场地时,应该保证周围内没有任何其他电力电子设备的干扰。3、在进行电气连接之前,务必采用不透光材料将光伏电池板覆盖或断开直流侧断路器。暴露于阳光,光伏阵列将会产生危险电压。4、所有安装操作必须且由专业技术人员完成。5、光伏系统发电系统中所使用线缆必须连接牢固,良好绝缘以及规格合适。6、所有的电气安装必须满足当地以及国家电气标准。逆变器确认手上没有其它金属物,以免发生蓄电池短路,灼伤人体。上海超声波逆变器厂家推荐
逆变器使用的功率开关管数量很少。南京正弦波逆变器推荐
所谓PWM脉宽调制技术(Pulse Width Modulation,PWM),是用一种参考波(通常是正弦波,有时也采用梯形波或注入零序谐波的正弦波或方波等)为调制波(Modulating Wave),而以N倍于调制波频率的三角波(有时也用锯齿波)为载波(Carrier Wave)进行波形比较,在调制波大于载波的部分产生一组幅值相等,而宽度正比于调制波的矩形脉冲序列用来等效调制波,用开关量取代模拟量,并通过对逆变电源开关管的通/断控制,把直流电变成交流电,这种技术就叫做脉宽控制逆变技术。[1]由于载波三角波(或锯齿波)的上下款度是线性变化的,故这种技术就叫做脉宽控制逆变技术。由于载波三角波(或锯齿波)的上下宽度是线性变化的,故这种调制方式也是线性的,当调制波为正弦波时,输出矩形脉冲序列的脉冲宽度按正弦规律变化,这种调制技术通常又称为正弦脉宽调制南京正弦波逆变器推荐
深圳市保益新能电气有限公司坐落在大浪街道浪口社区华荣路496号德泰工业区1号厂房4层402,是一家专业的电气设备、电源产品、逆变器,UPS,通讯电源,储能电源产品、工业电源、电池充放电电源设备、电池充放电管理系统设备、数字电源、无功补偿器或者功率矫正器、数字控制技术软件、工业控制软件、电力计量产品、新能源设备、太阳能、并网逆变器、离网逆变器、汇流箱、控制器,通讯设备产品、节能电子产品、回馈式电源负载的研发、销售及相关信息咨询。公司。公司目前拥有较多的高技术人才,以不断增强企业重点竞争力,加快企业技术创新,实现稳健生产经营。公司业务范围主要包括:UPS/EPS电源,双向逆变器,安防电源,激光储能电源等。公司奉行顾客至上、质量为本的经营宗旨,深受客户好评。公司深耕UPS/EPS电源,双向逆变器,安防电源,激光储能电源,正积蓄着更大的能量,向更广阔的空间、更宽泛的领域拓展。
PLECS 应用示例(77):三相T型逆变器(Three-Phase T-Type Inverter)
本文展示了一款用于并网应用的三相T型逆变器,采用Wolfspeed SiC MOSFET。图1显示了电路图,演示了如何选择器件、控制器参数和调制方法以影响逆变器的热性能。模型研究了逆变器在不同运行条件下的性能,确保系统安全高效运行。
T型逆变器类似于三电平中点箝位(NPC)逆变器,提供改进的谐波性能,同时减少零件数量和外部开关器件的导通损耗。本示例展示了一个22 kVA额定功率的T型逆变器,将800 V直流母线转换为三相60 Hz、480 V(线路,rms)配电。
模型配置了三种不同开关类型的SiC MOSFET,分别具有不同的额定电压、额定电流和RdsOn值,用于评估其热性能。每个器件都被建模为具有定制掩模配置的子系统,包括MOSFET和体二极管,以及热模型。组件掩模参数包括导通电阻和体二极管正向电压,以确定电流流过路径,影响开关损耗。
控制器采用解耦的同步参考系电流控制器,用于生成dq电压参考,通过独立的PI调节器将逆变器输出电流调节至设定点。PI控制器包括去耦前馈项,使用简单的同步参考帧锁相环(PLL)测量电压参考相位角,然后转换为三相电压参考,馈送到调制器,用户可选择不同的调制方案。
调制器组件实现不同的调制方法,如SPWM、SVPWM、THIPWM、THZSPWM和DPWM,以比较其对半导体损耗的影响。例如,DPWM在单位功率因数下的损耗最低,但当功率因数角接近0.5时,SPWM和SVPWM方法显示出较高的损耗。
通过操纵控制器设置、调制方案、开关频率、死区时间、控制器增益以及分析设备类型、并联设备数量和外部冷却或散热器的影响,可以试验控制器设置并分析系统级电气规格。参数扫描是确定设计决策如何在一系列操作条件下影响转换器性能的有效方法。
该模型突出显示了PLECS的热建模能力,并可以作为研究控制器设计对其他拓扑结构效率影响的例子。
PLECS应用范例(77):三相T型逆变器(Three-Phase T-Type Inverter)
本演示介绍了一种三相T型逆变器,用于部署Wolfspeed SiC MOSFET的并网应用。T型逆变器类似于三电平中性点箝位(NPC)逆变器,因为它在0V时增加了额外的输出电压电平,从而比标准的两电平逆变器提供了更好的谐波性能。T型逆变器的优点是减少了部分计数和减少了外部开关器件的传导损耗,但缺点是阻断电压降低。演示模型显示了一个额定值为22 kVA的T型逆变器示例,该逆变器将800 V直流母线转换为三相60 Hz、480 V(均方根)配电,用于工业应用。
T型逆变器的热性能受到设备选择、控制器参数和调制方法的影响。在演示模型中,所有12个器件均配置为演示不同Wolfspeed SiC MOSFET的热损耗性能。每个半导体器件被建模为具有定制掩模配置的子系统,每个都有自己的热模型。设备断言(Device Assertions)会检查设备在安全操作区域内的运行情况,并生成警告。
控制器实现的高级示意图如图4所示。图5所示的去耦合同步参考框架电流控制器用于为调制器生成dq电压参考,调制器则将变频器的输出电流调节到所需的设定点。控制器包括直接电流和正交电流的PI调节器,电压参考的相位角由一个简单的同步参考框架锁相环(PLL)测量得到。使用PLL的角度输出,电压参考值被转换为三相电压参考值,并送入一个调制器。调制器的实现可以采用不同的调制方法,包括经典的正弦脉宽调制(SPWM)、空间矢量PWM(SVPWM)、三次谐波注入PWM(THIPWM)、三次谐波零序PWM(THZSPWM)和不连续PWM(DPWM)。
使用提供的模型运行仿真,可以观察到每个相支路的PWM信号、输出交流电流、设备S11和S12的信号以及系统的计算损耗。参数扫描是确定设计决策如何在一系列操作条件下影响变换器性能的有效方法。通过操纵调制方案、开关频率、停滞时间、控制器设定点和控制器增益,可以试验控制器设置。此外,还可以分析设备类型、并联设备的数量以及外部冷却或更大散热器的影响。所有这些设置都会影响损耗行为和系统效率。如果设备在安全操作区域外运行,模拟窗口的右下角将出现一个警告图标,以确定违反了哪些操作标准。
模型重点介绍了用于工业配电网应用的三相T型逆变器。通过简单的设备和控制器设计,突出了PLECS的热建模能力。此模型可用作研究控制器设计对其他拓扑效率影响的示例。
SVPWM的一点理解
如何理解SVPWM的问题,一直是很多人心中的疑团。然而如果你是做电机控制的,这始终是个无法回避的话题。本文尝试从基于载波的SVPWM的角度进行阐述。
三相逆变器拓扑结构如下:
基于倒推的方法进行理解。已知svpwm的电压利用率可达1,使用svpwm的调制方式,线电压的幅值可达Udc。假设:Udc=1;选择载波范围为[0,1]。为了防止进入过调制区域,必须保证调制波范围为[0,1]。基于载波的调制方式,画一个简图,理论上,调制输出的端电压波形应该和调制波波形相同(幅值及相位均相等)。因此,为了不进入过调制,端电压的幅值也需要被限制在[0,1]。当线电压幅值为Udc时,相电压的幅值应该为[公式]。当线电压Uab,Uac,Ubc幅值为1,那么Uan,Ubn,Ucn幅值应该为[公式],如下图所示。三相的端电压与相电压的关系为:[公式]、[公式]、[公式]。将公式相加,可得[公式];相减,可得线电压为:[公式]、[公式]、[公式]。可知,Uno的选择不影响线电压的大小,你可以根据需要去选择其大小。若取星结点电压为[公式],端电压,相电压及星结点电压可用下图曲线表示。上图中端电压Uao/Ubo/Uco超过了1。前面提到,为了防止进入过调制,端电压Uao/Ubo/Uco的大小必须小于1。因此,上述星结点电压的选择并不合适。为了满足Uan,Ubn,Ucn幅值为[公式],且使端电压Uao/Ubo/Uco不大于1,该如何选择星结点电压Uno呢?如果能够想办法选择出合适的星结点电压,让超过1的波峰被削掉,如下图所示。此时,端电压波形Uao/Ubo/Uco,即调制波波形,按照上述思路,你肯定可以想到其他的星结点选择方式。
这里为了清楚显示结果,将模型信号流做如下处理,当然这样并不符合MAAB建模规范。由仿真结果得知,母线电压为0.998,约为1;相电压幅值为0.5762,约为[公式]。调制波及载波波形如下图所示。
基于载波的调制方式,如下图所示。首先给出如下公式,调制信号为[公式]。端电压为[公式]。上述公式成立的前提是不能进入过调制区域。对于spwm而言,[公式] 如载波在[-1,1]之间, [公式] 均为幅值为1的正弦调制波形,那么根据上述公式可得,端电压幅值及相电压幅值均应该为E/2。可知上述结论与常识相符合。假设[公式],[公式],[公式],m为调制比,m<=1时,为线性调制。则根据公式(1)和公式(2),可知[公式]、[公式]、[公式]。由上述公式可得线电压:[公式]、[公式]、[公式]。可知,[公式]不影响线电压,因此称其为零序电压分量。当[公式]时,那么线电压为E,则电压利用率达到了1。但是,此时必须选择合适的[公式],防止调制波超过载波幅值1(防止进入过调制)。这里直接给结论,如下[公式]的一种选择,可等价于SVPWM:[公式]、[公式]、[公式]。但是,基于载波调制方式和基于空间矢量调制实现的SVPWM等价与否,能否给出证明呢?我们知道,基于空间矢量的svpwm中施加的T0=T7=(1-T1-T2)/2。上述问题变成了,已知零序电压为[公式],如何证明T0=T7=(1-T1-T2)/2?第一扇区的空间向量调制,如下图所示。由上图,基于伏秒等效原理(面积等效,即电压波形和时间轴围成的面积)可得:[公式]、[公式]、[公式]。基于上述公式组(3)及公式(1)可得:[公式]、[公式]。基于公式组(1),三个公式左边右边相加,可得[公式]。将公式(4)带入上式可得,基于空间向量调制等效的零序分量为[公式]。且根据公式组(3),左边右边相减,可得:[公式]、[公式]。基于上述公式可得:[公式]、[公式]、[公式]。扇区分布及三相电压大小关系如下图所示。那么在第一扇区,[公式]和[公式]可表示为:[公式]、[公式]。基于已知条件的零序电压为[公式],代入[公式]和[公式]可推出:[公式]。假设公式(6)和(7)相等,可得:[公式]化简后可得:[公式]。又由于[公式],则可得:[公式]。证明完毕。可知只要合理选择零序分量及零矢量的作用时间,基于载波的方式和空间向量等效。
1.1永磁同步电机——矢量控制(FOC)
永磁同步电机(PMSM)的矢量控制,主要目标是通过控制逆变器输出电压,得到相应的转速。矢量控制核心在于Clark变换与Park变换,这两变换分别将三相定子电流分解为励磁分量和转矩分量,对于表贴式永磁同步电机,主要控制励磁,也会影响转矩。
一、三相PMSM坐标变换:
Clark变换和Park变换是坐标系之间的转换方式。Clark变换将自然坐标系ABC坐标转换到静止坐标系[公式],Park变换则相反。Clark变换的坐标变换矩阵为[公式],反Clark变换矩阵为[公式]。Park变换中,坐标变换矩阵为[公式],反Park变换矩阵为[公式]。基于此变换,得到自然坐标系ABC到同步旋转坐标系[formula] 的关系。
二、PMSM数学建模:
基于Park变换的数学模型中,定子电压方程、磁链方程可得到电磁转矩方程,以及几个关键的关系式。
三、三相空间矢量:
三相空间矢量技术采用逆变器空间电压矢量切换,通过该技术可获得准圆形旋转磁场,达到改善控制性能、减少谐波、提高电压利用率、降低电机转矩脉动的目的。空间矢量合成的方法将逆变器三相输出的标量转换为矢量,其运动轨迹如下图所示。
四、SVPWM算法实现:
实现三相空间矢量变换的技术,即SVPWM算法,首先需判断电压空间矢量的扇区,确定合成矢量使用的基矢量。计算各矢量作用时间,最后确定矢量切换点。
五、基于PI调节器的PMSM矢量控制仿真:
基于给定参数,通过simulink建立电机模型,设定仿真条件,结果显示转速、转矩及三相定子电流波形。
结语:
以上内容涉及的理论知识源自《现代永磁同步电机控制原理及MATLAB仿真》一书。如有需求,可前往闲鱼购买电子版及仿真模型。欢迎在评论区就永磁同步电机知识进行友好交流。
电力电子系统建模及控制简介
本书重点介绍电力电子系统的动态模型建立方法和控制系统设计方法。电力电子系统建模与控制涉及功率变换、电工电子、自动控制等多个学科,是应用性较强的技术。
书中包含多种电力电子系统建模方法,如状态空间平均、平均开关网络模型、统一电路模型等。讨论电流峰值控制的稳定性问题以及提高稳定性的方法。深入分析DC/DC变换器反馈控制设计,涉及三相PWM整流器和逆变器动态模型的建立。同时,书中详细阐述三相PWM交流器的解耦控制和空间矢量调制SVM方法。此外,还涵盖了DC/DC变换器并联系统动态模型及均流控制、逆变器并联系统动态模型及均流控制等内容。
本书为电力电子与电力传动专业及其他相关专业的研究生提供教材,同时也可作为从事电力电子装置、变频器、电子电源等开发、设计工程技术人员的参考书。其内容丰富,理论与实践相结合,对电力电子系统建模与控制领域的学习与研究具有重要指导意义。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467