Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器控制电路

发布时间:2025-02-21 04:20:33 人气:



逆变器电路的具体样式和它的详细原理是啥

逆变器电路图样式多样,常见的有半桥逆变器电路图、全桥逆变器电路图等。半桥逆变器电路图相对简单,主要由两个功率开关管、两个电容、一个变压器等构成;全桥逆变器电路图则包含四个功率开关管以及相关的储能、滤波元件等。

逆变器的原理是将直流电转换为交流电。以常见的全桥逆变器为例,其工作过程如下:直流电输入后,四个功率开关管在控制电路的作用下按照一定顺序轮流导通和截止。当一组对角的开关管导通时,电流从电源正极经导通的开关管、负载,再经另一组导通的开关管回到电源负极,在负载上形成一个方向的电流;当另一组对角的开关管导通时,电流方向相反。通过控制开关管的导通和截止时间,就能在负载上得到交变的电压和电流,实现直流到交流的转换。控制电路通常采用PWM(脉冲宽度调制)技术,通过改变脉冲的宽度来调节输出交流电的电压幅值等参数,以满足不同的用电需求。

逆变器电路图及原理

一、基本逆变器电路

理解逆变器的基本原理对于设计电路至关重要。图一展示了一种基于12V直流到220V交流的简单逆变器电路。核心部分由BG2和BG3组成的多谐振荡器控制BG1和BG4,进而驱动BG6和BG7工作。整个电路由BG5和DW构成的稳压电源供电,确保了频率的稳定性。市电变压器提供双源虚12V输出,而电池的容量决定了逆变器的工作时间。

二、高效率正弦波逆变器

图二介绍了一种高效率的正弦波逆变器电路,它使用12V电池作为电源,并通过倍压模块为运放供电,例如使用ICL7660或MAX1044。运放1负责产生50Hz的基准信号,运放2则作为反相器使用,运放3和4构成了比例开关电源,实现两个开关管的交替工作。电路中的迟滞比较器的正反馈确保了频率的调整。C3和C4用于滤波,C5的值通过计算确定,L的值通常选为70H。R4和R3之间的比例需要精确,以避免波形失真。开关管的最大电流应根据公式计算,例如I=25A。

在选择逆变器时,必须考虑实际应用需求和电器的特性。此外,还需要根据驱动波形是正弦波还是方波来选择合适的逆变器。

逆变器电路图是如何呈现的并且其详细原理是怎样的

逆变器电路图通常由主电路和控制电路两部分呈现。主电路包含整流电路、储能电路和逆变电路。整流电路一般用二极管桥式整流,将输入的交流电转换为直流电;储能电路多由电容构成,用于存储电能、稳定电压;逆变电路是核心,由功率开关管(如IGBT)组成,通过特定的开关组合将直流电逆变为交流电。控制电路则包括信号产生、驱动和保护等部分,信号产生电路生成控制信号,驱动电路放大信号来控制功率开关管的导通与截止,保护电路监测电路状态,在异常时采取保护措施。

逆变器原理基于电力电子技术。以常见的单相桥式逆变器为例,输入直流电,控制电路按一定规律控制四个功率开关管的导通和截止。当对角的两个开关管导通,另两个截止时,电流按一个方向流过负载;当开关管导通情况相反,电流反向。通过快速切换开关管状态,在负载两端形成交变电压,实现直流到交流的转换。不同类型的逆变器,如三相逆变器,原理类似但电路结构和控制方式更复杂,以满足三相交流电输出要求 。

逆变器电路图有着怎样的布局以及详细原理是怎样的

逆变器电路图布局通常包含几个关键部分。输入部分,一般有直流电源接口,用于接入直流电。控制电路部分,常位于电路图中间区域,包含各种芯片和逻辑电路,负责控制整个逆变器的运行,如调节输出频率、电压等参数。功率转换部分,由功率开关管等组成,多处于电路图靠近输出的位置,承担将直流电转换为交流电的关键任务。输出部分,有交流输出接口,为负载供电。

逆变器的详细原理是,首先直流电源输入后,控制电路会产生特定的控制信号。这些信号传送到功率转换部分,功率开关管在控制信号作用下,按照一定规律导通和截止。通过这种周期性的导通与截止动作,将输入的直流电切割、变换成一系列脉冲信号。这些脉冲信号经过滤波电路处理,滤除其中的高频杂波和纹波,最终得到较为平滑、稳定的交流电输出,从而实现从直流到交流的电能转换,为需要交流电的负载提供合适的电源。

pwm逆变电路的常用控制方法有两种,一是 ;二是 。

PWM逆变电路的控制手段主要分为两种:计算法和调制法。调制法分为异步调制和同步调制两种。PWM逆变技术的优势在于能够精确控制输出电压,实现简单的结构设计,并在充电过程中对电流进行精确控制。PWM技术通过调节脉冲宽度来控制输出电压,同时通过改变脉冲的调制周期来调整输出频率。随着电子技术的进步,出现了多种PWM技术,包括相电压控制PWM、脉宽PWM、随机PWM、SPWM、线电压控制PWM等。本文主要介绍的是在镍氢电池智能充电器中应用的脉宽PWM法。这种方法通过等宽脉冲序列实现PWM波形,通过调整脉冲序列的周期来调节频率,通过改变脉冲宽度或占空比来调节电压。适当的控制策略可以使电压和频率同步变化。通过调整PWM周期和占空比,可以实现充电电流的精确控制。这种方法能够协调调压和调频的作用,与中间直流环节无关,从而提高调节速度和动态性能。由于输出为等幅脉冲,只需恒定直流电源供电,因此可以使用不可控整流器替代相控整流器,显著提高电网侧的功率因数。PWM逆变器能够有效抑制或消除低频次谐波,同时由于使用了自关断器件,开关频率大幅提高,输出波形可以非常接近正弦波。

简单的逆变器电路图分析

这里提供的逆变器电路图分析,主要由MOS场效应管和电源变压器构成,其输出功率依赖于这些元件的功率,省去了复杂的变压器绕制,适合电子爱好者业余制作。接下来,将详细介绍逆变器的工作原理及制作过程。

**电路图**

![电路图](插入电路图)

**工作原理**

首先,详细介绍这个逆变器的工作原理。方波信号发生器(见图3)采用六反相器CD4069构成。电路中的R1是补偿电阻,用于改善由于电源电压变化导致的振荡频率不稳定。电路的振荡是通过电容C1的充放电完成的,其振荡频率为f=1/2.2RC。图示电路的最大频率为fmax=1/2.2×3.3×10^3×2.2×10^-6=62.6Hz,最小频率fmin=1/2.2×4.3×10^3×2.2×10^-6=48.0Hz。由于元件误差,实际值可能略有差异。多余的反相器输入端接地,以避免影响其他电路。

**场效应管驱动电路**

由于方波信号发生器输出的振荡信号电压的最大振幅为0~5V,为充分驱动电源开关电路,使用TR1和TR2将振荡信号电压放大至0~12V(见图4)。这是该装置的核心部分,在介绍该部分工作原理之前,先简单解释MOS场效应管的工作原理。

**MOS场效应管工作原理**

MOS场效应管也称为金属氧化物半导体场效应管,其缩写为MOSFET。它通常有耗尽型和增强型两种。本文使用的是增强型MOS场效应管,其内部结构见图5。它可分为NPN型和PNP型。NPN型通常称为N沟道型,PNP型也称为P沟道型。由图可知,对于N沟道的场效应管,其源极和漏极接在N型半导体上,同样,对于P沟道的场效应管,其源极和漏极则接在P型半导体上。我们知道,一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

**场效应管应用电路工作过程**

对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处于截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。我们也可以想象为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。图8给出了P沟道MOS场效应管的工作过程,其工作原理类似,不再重复。

**逆变器电路部分工作过程**

由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程(见图10)。工作原理同前所述。这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。

**制作要点**

电路板见图11。所用元器件可参考图12。逆变器用的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏-源极间电阻为25毫欧。此时如果通过10A电流时会有2.5W的功率消耗。N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏-源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。所以在考虑散热器时应注意这点。图13展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接法。尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。

**逆变器的性能测试**

测试电路见图14。这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。其测试结果见电压、电流曲线关系图(图15a)。可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。以负载为60W的电灯泡为例:

假设灯泡的电阻不随电压变化而改变。因为R灯=V^2/W=210^2/60=735Ω,所以在电压为208V时,W=V^2/R=208^2/735=58.9W。由此可折算出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时输出电压为200V。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言