湖北仙童科技有限公司
全国咨询热线:0722-7600323

六阶逆变器

发布时间:2025-02-05 14:30:13 人气:



逆变器的工作原理是怎样的?

PWM(脉宽调制)是一种数字信号编码技术,它使用高分辨率计数器来调制方波信号的占空比,以此来模拟信号的电平。在PWM信号中,直流供电要么完全接入(开启),要么完全断开(关闭),因此电压或电流源以一系列通断脉冲的形式加到模拟负载上。只要带宽足够宽,任何模拟值都可以通过PWM进行编码。例如,可以用一系列等幅不等宽的脉冲来代替正弦波,或者用矩形脉冲代替,这些脉冲等幅不等宽,中点重合,面积相等,宽度按正弦规律变化。SPWM(正弦波PWM)波形是一种脉冲宽度按正弦规律变化,且与正弦波等效的PWM波形。

PWM逆变器的三相功率级用于驱动三相无刷直流电机。为了使电机正常工作,电场必须与转子磁场之间的角度接近90度。通过六步序列控制,产生6个定子磁场向量,这些向量根据指定的转子位置进行改变。霍尔效应传感器用于检测转子位置,以提供6个步进电流给转子。功率级使用6个可以按特定序列切换的功率MOSFET来实现这一点。

在常用的切换模式中,MOSFET Q1、Q3和Q5进行高频切换,而Q2、Q4和Q6进行低频切换。当低频MOSFET开启且高频MOSFET处于切换状态时,会形成一个功率级。例如,如果L1和L2相位供电,而L3相位未供电,电流将流经Q1、L1、L2和Q4。当Q1关闭时,电感产生的额外电压会导致体二极管D2正向偏置,允许续流电流流过。当Q1开启,体二极管D2反向偏置,电流流经二极管,从N-epi到P+区,即从漏极到源极。为了改善体二极管的性能,研究人员开发了具有快速恢复特性的MOSFET,其反向恢复峰值电流较小。

在PWM逆变器电路中,电阻R2和电容C1用于设置集成电路内部振荡器的频率,而R1用于微调频率。IC的引脚14和11分别连接到驱动晶体管的发射极和集电极终端,同时引脚13和12连接到晶体管的集电极。引脚14和15输出180度相位差的50赫兹脉冲列车,用于驱动后续晶体管阶段。当引脚14为高电平时,晶体管Q2导通,进而使Q4、Q5、Q6从+12V电源连接到上半部分变压器T1,产生220V输出波形的上半周期。同理,当引脚11为高电平时,Q7、Q8、Q9导通,通过变压器T2产生下半周期电压,从而形成完整的220V输出波形。

在变压器T2的输出,电压通过桥式整流器D5整流,并提供给误差放大器的反相输入端PIN1。比较内部参考电压后,误差电压调节引脚14和12的驱动信号的占空比,以调整输出电压。电阻R9用于调节逆变器输出电压,因为它直接控制输出电压误差放大器部分的反馈量。二极管D3和D4作为续流二极管,保护晶体管在变压器T2初级侧产生的电压尖峰。R14和R15限制Q7的基极电流,R12和R13防止意外的开关ON下拉电阻。C10和C11用于绕过变频器输出噪声,而C8是稳压IC 7805的滤波电容。电阻R11限制通过LED指示灯D2的电流。

PLECS应用示例(88):Z源逆变器(Z-Source Inverter)

本演示展示了一种用于燃料电池应用的电流控制三相Z源逆变器。图1显示了Z源逆变器的电路。Z源逆变器中独特的阻抗网络允许逆变器在降压和升压模式下运行。

阻抗源(或阻抗馈电)功率转换器,也称为Z-source逆变器(或转换器),使用由以X形状连接的分裂电感器和电容器组成的阻抗网络,将主转换器电路耦合到电源(或负载)。它可用于实现DC-AC、AC-DC、AC-AC和DC-DC功率转换,以取代传统的V源或I源转换器。

演示模型显示了Z源逆变器的一个示例,其中来自燃料电池源的直流电压被转换为三相交流输出。传统的V源逆变器(VSI)在没有额外的DC-DC升压级的情况下不能产生大于DC电压的AC输出电压。根据第2.1节中定义的降压-升压因子,Z源逆变器可以产生大于或小于DC电压的AC输出电压。需要一个与直流电源串联的二极管来防止反向电流。

在传统的VSI中,当DC电压施加在负载上时,有六种可能的有源开关状态(在三相支路中的每一个支路中只有一个上开关或下开关导通)和两种零状态(负载端子通过所有上开关或所有下开关短路)。Z源逆变器具有额外的零状态,当负载端子通过一个或两个或全部三相支路的上开关和下开关短路时。这种直通零状态为逆变器提供了独特的降压-升压特性。当直流电压足够高以产生所需的交流电压时,击穿零状态为非激活状态。否则,逆变器的等效直流输入电压将使用直通状态[1]升压。

锁相环(Phase-Locked Loop)PLECS组件库提供了一个同步参考帧锁相环(SRF-PLL)组件,如图2所示。它包含一个低带宽比例积分(PI)控制器,用于检测三相输入信号的相位角。然后,相位信息用于将AC输出电流和电压转换为旋转参考系(dq)[4]。

电流控制器(Current Controller)在交流侧的dq帧中,[公式] [公式] 其中,[公式] 和 [公式] 是电压, [公式] 和 [公式] 是电流, [公式] 是A相电压的峰值。交叉耦合项 [公式] 和 [公式] 是abc到dq变换的结果。为了实现简单的一阶对象,在控制器中提供它们作为前馈,以解耦q和d轴电流。

基于上述对象传递函数,使用K因子方法对电流控制器进行解析调谐。K因子方法是一种环路成形技术,其中可以针对指定的相位裕度和交叉频率准确地设计控制器。[2]中解释了使用K因子方法的控制器设计。

电流控制器的输出是一组三相正弦信号{Ma,Mb,Mc}。

射击任务计算器(Shoot-through duty calculator)当降压-升压因子BB大于1时,直通占空比计算器计算开环直通占空比d,如图4所示。

使用所提供的模型进行仿真,以观察PWM信号、输出交流电流和Z网络电容器电压。

在0.2 s时,d轴交流电流参考从5 A增加到10 A,在0.4 s时,q轴交流电流基准变为−5 A。观察输出dq电流遵循参考信号,如图6所示。

输出交流相电压为[公式] V,直到0.6s,见图7,输入直流电压为70V。因此,降压-升压因子BB为:

由于降压-升压因子大于1,所以启用直通占空比。Z源逆变器在升压模式下运行。从图8中可以观察到,穿透周期关于原始切换瞬间对称放置。

在0.6 s时,见图7,输入直流电压从70 V升压到190 V,新的调制指数计算如下:

由于降压-升压因子小于1,直通占空比为零,如图9所示。此时,Z源逆变器以降压模式工作,并使用传统的PWM调制方案。

该模型重点介绍了一个电流控制的三相Z源逆变器,展示了一些PLECS控制域组件,包括连续控制器方案和状态机调制器。状态机块评估由电流控制器生成的三相正弦调制指数信号的最大值和最小值,并插入适当的直通占空比值以获得新的比较信号。

SVPWM学习

摘要:电压空间矢量调制技术(SVPWM)源于电机控制领域。它通过控制逆变器输出波形,实现与交流电机产生圆形磁场的同步,从而提升输出波形质量。SVPWM也被称作磁链跟踪控制,其核心是在静止坐标系下,通过线性组合逆变器可输出的电压空间矢量和作用时间,逼近期望的电压空间矢量。

1 空间电压矢量的定义

如图1所示,A、B、C三个轴分别表示空间静止的坐标系。电压空间矢量的定义源自交流电机分析。电机定子电压u1、u2、u3的方向始终在A、B、C轴上,随时间按正弦规律变化,三相电压空间矢量如图1所示可合成一个旋转矢量。其幅值大小为相电压的1.5倍,频率随电源频率变化。用以下公式表示。

若取A轴为复平面的实轴,则B轴和C轴的位置分别为:

三相正弦电压:

这意味着三相对称正弦电压所合成的空间矢量是一个在空间中等幅恒速旋转的矢量。合成的空间电压矢量的幅值是原来的正弦量幅值的1.5倍。通常,希望空间电压矢量与原来三相对称正弦量的幅值相同,于是,空间矢量可以定义为:

2 三相感应电机定子端电压与定子磁链矢量之间的关系

当电机转速不是很低时,定子电阻上的压降对于定子磁链产生的感应电动势来说较小,可以忽略。

在电机学中,当电机由三相平衡正弦电压供电时,电动机定子磁链幅值恒定,其空间矢量以恒速等幅旋转,其矢端的运动轨迹呈圆形,一般称为矢量圆。

定子磁链旋转矢量可用下式表示:

图2 磁链圆

当磁链幅值一定时,电压空间矢量的大小与供电电压频率成正比,其方向与磁链矢量正交,即磁链圆的切向方向。当磁链矢量在空间旋转一周时,电压矢量也连续地按磁链圆的切线方向运动2弧度,其轨迹也是圆形的。这样,电动机旋转磁场的轨迹问题就可转化为电压空间矢量的运动轨迹问题。

3 三相全桥电压型PWM逆变器的八个电压空间矢量

图3 三相桥式逆变电路

电压源型PWM逆变器同一桥臂的上、下开关管驱动信号互补。这三个桥臂独立,每个桥臂有两种开关状态,2*2*2=8,三相全桥电压型PWM逆变器总共可以输出8个电压空间矢量。

(1)开关模式分析分析

(合成的电压空间矢量)

其他七个空间电压矢量都可以按照以上的分析,得到空间电压矢量合成图。

(2)三相全桥电压型PWM逆变器共可输出8个电压空间矢量,其中有6个有效矢量,2个零矢量。有效电压空间矢量的幅值为2/3.

图4 基本电压空间矢量图

4 正六边形空间旋转磁场

图5 正六边形的旋转磁场

6个有效空间电压矢量,在一个输出基波电压周期内各自依次连续作用1/6周期,逆变器运行于这种状态时会得到一个正六边形的旋转磁场。六个有效电压矢量各自连续作用1/6T,显然不能得到一个圆形的旋转磁场。所以这种六拍阶梯波逆变器的性能较差。

电机转动形成圆形的旋转磁场。如何使逆变器输出的正六边形的旋转磁场变成一个圆形旋转磁场?

图6 圆形的旋转磁场

(1)、图4中磁链矢量为何与电压矢量不垂直?

输入电压不是正弦,得到的磁链不是圆形旋转的,其幅值也在变化,所以相位就不再是相差.

(2)、SVPWM作用和目标?

在每个1/6T之内,磁链的变化为一段圆弧,而不是一段弦。真正的圆弧肯定是得不到的,除非用理想的正弦电压供电。但这是目标,可不可以设法尽可能地逼近这个目标?可以用一段一段的弦来逼近圆弧。分段越多,越接近圆弧。如何得到一段一段的弦?SVPWM。

5 电压空间矢量调制

如图4可知,8个电压矢量形成一个六边形,这和电机原理的圆形磁场还相差很远,所以电压输出效果肯定不好。众所周知,矢量之间可以进行合成,那么我们就用8个电压矢量进行合成,得到想要的电压矢量从而可以得到接近圆形的电压矢量。这就是电压空间矢量(SVPWM)的基本思想。

用弦去逼近圆弧,要知道弦代表的物理意义是磁链矢量的变化量,或者说是期望的电压矢量冲量,这是第一步逼近。每一段弦是期望的电压矢量冲量,可以看作是期望的电压矢量持续作用一个开关周期得到的。也就是说,每一段弦对应的时间是一个开关周期。开关周期越小,即开关频率越高,在一个基波周期内,圆周上的分段越多,得到的磁链轨迹越接近一个圆。

其次,逆变器的输出只有6个有效的电压空间矢量和2个零矢量,没有期望的电压空间矢量。只能用这8个矢量中的几个各自作用一段时间的冲量去逼近期望矢量作用时间的冲量,这是第二个逼近。

6 SVPWM实现过程

从上节的分析可知,哪几个电压空间矢量和其作用的时间是SVPWM的两个根本的问题。所以要实现SVPWM,共分为两步:

6.1 电压矢量的作用时间

图7 合成的电压矢量

从图7,可以将基本电压矢量作用时间分解到静止坐标系坐标系:

联立以上公式,可以得到:

以上是在扇区1中对电压空间矢量作用的时间的求解。在其他扇区,求解过程一样,这里就步一一阐述。

6.2 扇区判断

定义3个变量X、Y和Z。

图7 扇区划分

通过上节的公式推导,合成的空间电压矢量在基本电压矢量Us和u1、u2两者之间的扇区1中,求出t1、t2。

6.3 基本电压矢量的作用顺序

(1)五段式

(2)七段式

7 小结

综合以上的理论分析可知,要实现SVPWM需要解决三个方面的问题。

(1)、电压矢量的作用时间(伏秒原则);

(2)、相邻的两个基本电压矢量作用时间和零矢量作用时间在一个载波周期内的排列顺序(也就是发波的方式是五段式还是七段式);

(3)、判断参考电压矢量旋转到哪个扇区即扇区的判断。

7 仿真搭建

图8 SVPWM仿真模型

逆变器接上负载后输入电压就下降的原因?

 

如上图所示,输入电压为4.5V,楼主需要设计一个全桥电路将DC4.5V转换为100kHz的方波,通过环形磁芯升压,在次级整流滤波再经Buck电路(LM2596-12.0V)转换为12V电压10W功率的直流电压。

由于要求空间紧凑,采用的全桥工作频率为100kHz,先用纳米晶磁环作为变压器磁芯。利用AP法选择合适尺寸的磁芯,根据电磁感应原理计算得到初级匝数为2T,次级匝数为12T,升压比为6。

绕后将磁环接入电路,在空载时Buck电源能稳定输出12V。但是接入51Ω电阻作为测试负载后发现输出电压仅仅1.13V。51Ω的电阻作为负载,12V电压下消耗功率远未达到设计目标10W

现初步怀疑是设计阶段出了问题,楼主在下面贴上实测波形和详细的计算过程,希望有相关经验和知识的朋友能帮助我分析讨论。

分别测试了空载和带负载时磁环初级和次级的波形如下:

 

这是空载初级电压波形,脉冲平台期大约3V左右,输入电压是4.5V主要损耗应该是全桥的管压降。

 

空载次级电压波形,经过升压后平台期约11V左右(升压比为6)。

从空载波形上看,变压器初次级电压波形与设计目标基本一致。

 

这是带载后的初级电压波形,平台期电压接近1V。

 

这是带载后的次级电压波形,平台期电压5V左右,使LM2596-12无法正常工作。

对比带载前后的变压器波形,变压器未饱和,可以看出带载后变压器的初次级电压下降严重。是由于变压器功率不够?楼主很不解。反复检查了设计和计算过程,并没有发现错误。

下面贴上设计的计算过程:

步骤一:确定变压器设计的电源参数

       输入电压Ui :4.5V

       变压器输出电压 :20V

       变压器工作频率fs:10kHz

       电源输出功率Pi: 10 W

       变压器工作占空比:50%

       整流二极管压降 :1V

       变压器传输功率 :80%

       开关电源功率 :80%

步骤二:确定初次级匝数比

步骤三:确定高频变压器磁芯材料

选择铁基纳米晶磁环作为磁芯材料,饱和磁感应强度Bs=1.25T,顽绞力1.2A/m,初始磁导率80000,电阻率115μΩ·cm.

步骤四:确定工作磁感应强度Bm

确定磁感应强度B需要考虑两个问题:当输入电压达到最高时磁芯不饱和,变压器温升满足要求。通常选择Bm=(1/3~1/2)Bs=1/3*1.2T=0.4T,考虑到剩磁Br,为避免磁芯饱和,Bm取0.2T。

步骤五:确定磁芯尺寸

磁芯制造商在生产磁芯时会将磁芯有效截面积和窗口面积的乘积(面积积)作为工作功率大小的标识。可传递的功率和面积积存在如下关系:

      

式中:Ae为磁芯有效截面积(cm2);Aw为磁芯窗口截面积(cm2);Pt为变压器视在功率(W);ΔB为磁通密度变化量,双极性变换器为ΔB=2Bm(T)(选择了磁芯后可以计算);f为开关工作频率(Hz);K为近似系数(正激、推挽中心抽头变压器取K=0.014;全桥、半桥变压器取K=0.017)。

计算变压器传输效率为 ,

将数据代入

     

选择King magnetics公司生产的30*20*10纳米晶磁环,其有效截面积Ae=0.47 cm2,窗口面积Aw约3.14 cm2。AP=Ae×Aw=1.476 cm4,远远大于所需传输功率对应的AP值。

步骤六:确定原边和副边的绕组匝数

计算初级线圈匝数

式中△B为一个周期内磁感应强度变化大小(T),△B=2Bm;Ae为磁芯有效截面积(cm2);fs为变压器工作频率(Hz)。

代入数据,算的

取副边匝数 为12T,   

         取原边匝数 为2T。

步骤七:校验△B的可行性

由于线圈匝数少,楼主在计算过程中没有考虑绕制导线的内阻,原型机只采用了普通铜导线作为绕组材料,应该不会是次级线圈内阻大致的电压跌落。如图:

 

直观理解,接入空载和接入负载的区别在于变压器次级线圈电流从0变为一定值,次级电流产生的磁通会抵消一部分的初级线圈磁通。

电机控制中clark变换等幅值和等功率有什么影响呢?

Clarke变换用于将三相静止坐标系转换为两相静止坐标系,这一过程分为等幅值变换和等功率变换两种。

等功率变换下,两相坐标系的幅值为三相坐标系的倍数。

等幅值变换中,在两相坐标系中计算电机功率和扭矩时,需乘以特定系数。

Clarke变换公式为,当常数为等幅值变换,而当常数时为等功率变换。

三相平衡条件下,通过变换可以将电机电流表示为两相电流。

进一步将变换到以角速度逆时针旋转的同步旋转坐标系,形成Park变换。

在控制交流电机时,先进行Clarke变换得到两相电流,再将误差输入电流控制器,计算指令电压。

三相两电平电压源型逆变器输出的最大电压由调制方式和直流母线电压决定,工作在六阶梯模式下最大相电压幅值为。

定义调制比为线电压幅值与直流母线电压的比值。

等幅值Clarke变换下,坐标变换不会改变电流幅值。

等功率变换相比,电流控制器输出的指令电压需额外乘以系数。

采用等功率变换时,考虑电流控制器输出的指令电压需进一步调整,以适应PWM调制。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言