发布时间:2025-01-31 19:30:23 人气:
变换器和逆变器的区别
变换器是信息传递过程中的关键设备,它对信息进行必要的转换。矩阵式变换器,作为交-交电源变换器的一种,展现出显著的优势:省略了中间的直流储能环节;能够实现四象限运行;提供优质的输入电流和输出电压波形;允许功率因数的灵活控制。这种变换器已经成为电力电子技术领域的研究焦点,并且展望出广阔的应用前景。变换器,或称矩阵转换器,在20世纪70年代末由意大利学者M.Venturini和A.Alesina提出并详细阐述了其理论基础和控制策略,自那时起,其独特的性能才开始受到广泛关注和研究。目前广泛应用的是半控功率器件晶闸管,但使用这些器件构建矩阵式变换器在控制上极具挑战性。这种变换器的硬件设计要求包括大容量、高开关频率、双向阻断和自关断能力的功率元件,以及由于控制算法复杂性所需的高速微处理器作为控制核心。在早期,这些要求因技术限制而难以满足,导致矩阵式变换器的研究主要集中在拓扑结构和双向开关的设计上,并且多处于理论研究阶段。随着高频率、低控制功率的全控型功率器件如BJT和IGBT的出现,矩阵式变换器的控制策略研究得到了进一步推动。
逆变器则是将直流电能转换为交流电能的装置,通常用于将12V直流电转换为220V, 50Hz的正弦波交流电。一个典型的逆变器由逆变桥、控制逻辑和滤波电路构成,并广泛应用于空调、家庭影院、电动工具等多种电器设备。在国外,逆变器常用于汽车,方便在外工作或旅游时使用各种电器和工具。车载逆变器有不同功率规格,从20W到150W不等,而更大功率的逆变器需要连接到电瓶上。家用电器可以通过逆变器在汽车内使用,如手机、笔记本电脑、照相机等。逆变器实际上是一种将直流电转换为交流电的变压器,与变换器的过程相反。它将12V直流电转换为高频高压交流电,同样采用了脉宽调制(PWM)技术,其中核心部分均采用了PWM集成控制器,如UC3842和TL5001芯片。TL5001的工作电压范围为3.6至40V,内部包含了误差放大器、调节器、振荡器以及PWM发生器等。
个人光伏电站应该怎样选择并网逆变器?
并网光伏逆变器的选择至关重要,它主要分为高频变压器型、低频变压器型和无变压器型三大类。在选择时,我们需要考虑安全性与效率两个方面。
在选择并网光伏逆变器时,有五个主要方面需要考虑。首先,容量匹配设计是至关重要的。电池阵列与所接逆变器的功率容量需要匹配,一般设计思路是:组件标称功率乘以组件串联数再乘以组件并联数等于电池阵列功率。这意味着并网逆变器的最大输入功率应近似等于电池阵列功率,以实现逆变器资源的最大化利用。
其次,MPP电压范围与电池组电压的匹配也是重要的。太阳能电池的输出特性表明,电池组件存在功率最大输出点,并网逆变器具有在特定输入电压范围内自动追踪最大功率点的功能。因此,电池阵列的输出电压应处于逆变器MPP电压范围以内。一般的设计思路是电池阵列的标称电压近似等于并网逆变器MPP电压的中间值,这样可以达到MPPT的最佳效果。
最大输入电流与电池组电流的匹配同样重要。电池组阵列的最大输出电流应小于逆变器的最大输入电流。为了减少组件到逆变器过程中的直流损耗,以及防止电流过大对逆变器造成过热或电气损坏,逆变器最大输入电流值与电池阵列电流值的差值应尽量大一些。
转换效率是另一个需要考虑的因素。并网逆变器的效率标示通常包括最大效率和欧洲效率,通过加权系数修正的欧洲效率更为科学。在其他条件满足的情况下,转换效率应尽可能高。
最后,配套设备也是不可忽视的。并网发电系统是一个完整的体系,逆变器是其中的重要组成部分,与之配套的设备主要是配电柜和监控系统。并网电站的监控系统包括硬件和软件,根据自身特点而需要量身定做。一般大型的逆变器厂家都针对自己的逆变器而专门开发了一套监控系统,因此在逆变器选型过程中,应考虑相关的配套设备是否齐全。
想自己制作个简易逆变器
制作简易逆变器的核心在于将直流电转换为50Hz的交流电。这个过程涉及芯片驱动和功率管的精确控制。如果你对电学原理了解不多,这个项目确实有一定的挑战性,但对于一个爱好者来说,它绝对值得尝试。
以80W修正波逆变器为例,这是目前市场上最小功率的逆变器之一。制作这种逆变器所需的硬件包括:两个12V/2200UF的电容,一个80W高频变压器(12V转300),两颗直流MOS管3205,四颗交流MOS管740,两个PWM驱动芯片TL594,一个400V/100UF的高压电容,以及一颗LM324用于过欠压控制。此外,还需要一些三极管8050和8550作为驱动电路,一块电路板。
自己动手制作逆变器并非易事,但成本控制在100元以内是完全可能的。除了上述硬件,还需要一块万用表,用于测量电路参数。另外,一个继电器可以实现逆变器与市电的切换,但需要一个控制电路。切换时间必须控制在继电器反应时间以内,即20MS以内。
对于不间断电源来说,通常采用可控硅控制,其反应速度更快,可以实现相位跟踪,这对于一些高标准设备非常有利。给电池充电的控制可以通过电压采样控制电路实现,再加一个继电器即可。
以上就是简单的制作步骤,希望对你有所帮助!
逆变器主机制作方法
其原理是将直流电通过芯片驱动以及功率管的控制,再将其变压,能使输出是50hz的交流电
我是搞逆变电源的,首先如果对电不懂的,是有一定的难度,不过你是个爱好者,是值得表扬的,下面给你简单的回答,希望对你有帮助,以80W修正波逆变器为例,因为目前来说80w已经是很小功率的逆变器了
一,需要的硬件:
12V/2200UF的电容两个,80W高频变压器一个(12V转300),直流MOS管3205两个,交流MOS管740四个,PWM驱动芯片TL594两个,高压电容400V/100UF一个,还有LM324一个(用于过欠压控制),还有一些三极管8050和8550几个,做驱动电路,电路板一块。
二,自己能做出来,不过还是有相当的难度,成本在100元以内。
三,万用表一块
四,一个继电器可以实现逆变和市电的切换,但需要一个控制电路,切换时间是继电器的反应时间,在20MS
以内
五,对于不间断电源来说,一般都是通过可控硅控制的,反应时间快,可以相位跟踪,对于一些要求高的设备有好处。对于给电池充电的控制可以通过电压采样控制电路,加一个继电器实现。
技术支持:网界网论坛
轻松自制3.5KW逆变器:详解电路原理
轻松自制3.5KW逆变器:电路详解
一项成本仅为1200元却赢得8000元奖金的创新项目,来自湖南科技大学光伏逆变和电力电子研究生团队的合作。他们在立创开源硬件平台的星火计划·外包赛道上,打造了一款3.5KW大功率DC-AC逆变器,适用于24-72V宽输入直流范围,输出220V 50Hz的交流电。
逆变器设计巧妙,重量轻至2.6KG,便于携带,无论居家还是旅行都非常实用。项目核心在于处理宽电压输入范围的挑战,通过LLC调频升压和同步整流BOOST升压,确保在不同直流电压下仍能输出稳定电压。电路结构采用MATLAB仿真的单极性SWPM正弦波调制,确保了方案的可行性。
第一级LLC升压电路采用全桥结构,具备高效率,但无法调节电压。变压器采用2KW并联,输出电压与输入电压比为29:3.256。通过电桥测试谐振频率,频率定在65.5kHz。第二级同步BOOST升压则在低电压下调试,确保MOS管波形无畸变。
逆变部分采用经典的EG8010方案,注意安全操作,通过调节电流微调输出。辅助供电部分包括直流降压、快充控制以及降压模块,确保电路稳定运行。防反接电路采用NMOS保护,而逆变小板则采用金手指连接,便于参数显示。
整个项目的设计需谨慎,共炸毁20个MOS,提示大家仔细检查虚焊和短路。设计中,不同部分的调试难度不一,但提供了逐步调试的建议。星火计划外包赛道提供了机会,让有技术实力的你参与并赢取奖金。
如果你对这个项目感兴趣,可参考开源协议,并在嘉立创EDA开源硬件平台上了解更多详情。期待你的参与,一起创造更多开源佳作!
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467