湖北仙童科技有限公司
全国咨询热线:0722-7600323

三相逆变器电路图

发布时间:2025-01-13 21:30:13 人气:



逆变器坏了,该怎么去修理?

操作方法

01

逆变器分为两个大部分,主回路部分和控制回路部分,所以维修时两部分都要检查。第一步检测主回路部分。主回路分为整流、滤波、逆变三个部分,有些逆变器是直流供电的就没有整流部分。下图分享了逆变器的原理图,大家先熟悉一下再来讲解维修动作。先讲静态测试。

02

整流部分,没有的略过。整流民用都是单相交流输入,其原理可从上图得知就是4个二极管组成的全桥整流,只需根据二极管的单向导通性判断好坏即可!同时还要注意整流桥的绝缘耐压!下图是典型的单相全桥整流。用指针万用表分别测试四个二极管,正向导通,逆向不导通!否则就是坏掉了!最后测试绝缘耐压,根据耐压等级要求500V,绝缘电阻高于100M,泄露电流小于10ma!

03

限流电阻器抑制冲击电流的峰值。滤波电容器充电结束,电阻短路用继电器等即将电流抑制电阻器的两端短路,如下图所示,限流电阻坏了能用万用表电阻档测出来,这个坏了上电无任何反应。一般在几欧姆到几十欧姆之间。电阻没问题,确认一下继电器是否坏了或者触点烧连接了。

04

逆变部分主要由IGBT组成,单相电有4个IGBT,三相电有六个IGBT,本文以6个IGBT来说明。基本原理如下图。我们仍然是根据二极管单相导通性测试好坏。首先6组IGBT的静态阻值正反测电阻必须是一致的,否则异常的那一组肯定坏了!

05

以上是主回路静态测试,如果测出来是坏的,一定坏了,好的不一定是没问题的,后面要进行上电动态测试,接着我们讲控制部分电路的检测。如果主回路静态测试有问题将问题原件拆除,然后对控制线路目测,没有明显烧焦痕迹的可以送电测试!控制部分分为供电回路和IGBT驱动回路。供电回路检测是根据送点后,线路板的供电电压是否正常为标准,一般要有5V(单片机供电),正负15V(IC供电).主要原件是PWM调制IC以及开关变压器。

06

控制回路驱动部分的测试需要用到示波器,送电后6相驱动部分要有驱动波形,正常波形电压如下图所示,6路波形必须一致,发现异常的这一路驱动元件最好全部更换。

07

整体动态测试,直接测试逆变器输出电压是否稳定,电压值是否正常即可!提醒大家的是维修逆变器最好用指针万用表!

三相逆变器SPWM三次谐波注入仿真分析

在深入探索三相逆变器的SPWM技术中,我们首先描绘了一个引人入胜的电路场景:如图1所示的电压型三相逆变器,其中直流电压稳定在600V,载波频率设定为1kHz。负载条件独特,包括三相对称的10Ω电阻和10mH电感,同时接入一个50Hz的正弦波负载,其幅值为320V。为了模拟真实世界中的谐波行为,我们采用SPWM技术进行仿真,其中三次谐波的注入理论占据核心位置。

首先,我们构建了一个精密的工具箱——三相正弦波产生模块。借助Simulink的MATLAB Function,我们精确地生成了三相正弦波,参数time、f(50Hz)和SineWave_Am(320V)共同编织出和谐的波形,初相角随机变化,为逆变器的动态性能增添了一份自然的随机性。

然后,三次谐波计算模块如同一颗精密的调谐器,利用PLL技术跟踪a相电压,通过PID控制器的精细调节,确保a相电压的1/6幅值三次谐波与基波同步,这在逆变器的性能优化中扮演了关键角色。

紧接着,SPWM计算生成模块的舞台展开了,采用的是不对称规则采样法。这个魔法般的函数接收time、udc、fc(1kHz)、三相电压a~c作为输入,输出SPWM1~6,它犹如一个调色板,将三角形载波和阶梯波巧妙地交织,形成SPWM信号。同时,我们还嵌入了一款IIR巴特沃斯低通滤波器,它的目标是精确地滤除高频噪声,确保负载电压波形的纯净度。

整个仿真模型的构建如同一部交响乐,包括调制波的设计、谐波跟踪、SPWM信号的生成,以及逆变器模块和测量系统的协同工作。每个环节的波形分析都无比关键:调制波如预期般精准,谐波与基波同步如诗如画,SPWM波形调整至理想的0电平,滤波器在60Hz频段显示出强大的衰减能力,负载电压波形完美地满足了设计要求。然而,逆变器输出中依然可见显著的奇次谐波,总谐波失真(THD)达到了92.82%,这表明我们在追求效率的同时,对谐波管理的挑战也日益凸显。负载相电压呈现出五电平特性,THD为64.9%,这进一步揭示了SPWM技术在实际应用中的复杂性与优化空间。

通过这个仿真过程,我们得以深入理解SPWM技术在三相逆变器中的实际应用,以及三次谐波注入对性能的影响,为未来的优化设计提供了宝贵的数据和见解。

PLECS应用示例(88):Z源逆变器(Z-Source Inverter)

本演示展示了一种用于燃料电池应用的电流控制三相Z源逆变器。图1显示了Z源逆变器的电路。Z源逆变器中独特的阻抗网络允许逆变器在降压和升压模式下运行。

阻抗源(或阻抗馈电)功率转换器,也称为Z-source逆变器(或转换器),使用由以X形状连接的分裂电感器和电容器组成的阻抗网络,将主转换器电路耦合到电源(或负载)。它可用于实现DC-AC、AC-DC、AC-AC和DC-DC功率转换,以取代传统的V源或I源转换器。

演示模型显示了Z源逆变器的一个示例,其中来自燃料电池源的直流电压被转换为三相交流输出。传统的V源逆变器(VSI)在没有额外的DC-DC升压级的情况下不能产生大于DC电压的AC输出电压。根据第2.1节中定义的降压-升压因子,Z源逆变器可以产生大于或小于DC电压的AC输出电压。需要一个与直流电源串联的二极管来防止反向电流。

在传统的VSI中,当DC电压施加在负载上时,有六种可能的有源开关状态(在三相支路中的每一个支路中只有一个上开关或下开关导通)和两种零状态(负载端子通过所有上开关或所有下开关短路)。Z源逆变器具有额外的零状态,当负载端子通过一个或两个或全部三相支路的上开关和下开关短路时。这种直通零状态为逆变器提供了独特的降压-升压特性。当直流电压足够高以产生所需的交流电压时,击穿零状态为非激活状态。否则,逆变器的等效直流输入电压将使用直通状态[1]升压。

锁相环(Phase-Locked Loop)PLECS组件库提供了一个同步参考帧锁相环(SRF-PLL)组件,如图2所示。它包含一个低带宽比例积分(PI)控制器,用于检测三相输入信号的相位角。然后,相位信息用于将AC输出电流和电压转换为旋转参考系(dq)[4]。

电流控制器(Current Controller)在交流侧的dq帧中,[公式] [公式] 其中,[公式] 和 [公式] 是电压, [公式] 和 [公式] 是电流, [公式] 是A相电压的峰值。交叉耦合项 [公式] 和 [公式] 是abc到dq变换的结果。为了实现简单的一阶对象,在控制器中提供它们作为前馈,以解耦q和d轴电流。

基于上述对象传递函数,使用K因子方法对电流控制器进行解析调谐。K因子方法是一种环路成形技术,其中可以针对指定的相位裕度和交叉频率准确地设计控制器。[2]中解释了使用K因子方法的控制器设计。

电流控制器的输出是一组三相正弦信号{Ma,Mb,Mc}。

射击任务计算器(Shoot-through duty calculator)当降压-升压因子BB大于1时,直通占空比计算器计算开环直通占空比d,如图4所示。

使用所提供的模型进行仿真,以观察PWM信号、输出交流电流和Z网络电容器电压。

在0.2 s时,d轴交流电流参考从5 A增加到10 A,在0.4 s时,q轴交流电流基准变为−5 A。观察输出dq电流遵循参考信号,如图6所示。

输出交流相电压为[公式] V,直到0.6s,见图7,输入直流电压为70V。因此,降压-升压因子BB为:

由于降压-升压因子大于1,所以启用直通占空比。Z源逆变器在升压模式下运行。从图8中可以观察到,穿透周期关于原始切换瞬间对称放置。

在0.6 s时,见图7,输入直流电压从70 V升压到190 V,新的调制指数计算如下:

由于降压-升压因子小于1,直通占空比为零,如图9所示。此时,Z源逆变器以降压模式工作,并使用传统的PWM调制方案。

该模型重点介绍了一个电流控制的三相Z源逆变器,展示了一些PLECS控制域组件,包括连续控制器方案和状态机调制器。状态机块评估由电流控制器生成的三相正弦调制指数信号的最大值和最小值,并插入适当的直通占空比值以获得新的比较信号。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言