发布时间:2025-01-12 20:20:19 人气:
太阳能光伏并网逆变器怎样接线
太阳能光伏并网逆变器接线操作步骤:
1、用4乘10毫米的公制罗丝装逆变器固定于光伏板的支架;
2、将光伏板上的DC连接MC4插头分正负极连接到逆变器的DC输入端;
3、AC输出连接,使AC线连接AC防水插头,将AC插头连接插头插入逆变器上的AC输出插座;
4、安装好逆变器的所有连接线,确认AC及DC接线无误后,没有通AC电源时,可以观察到逆变器上的LED指示灯显示为红色。
光伏系统并网逆变器控制策略
光伏系统并网逆变器控制策略是太阳能发电技术的重要组成部分。随着新能源技术的快速发展,太阳能以其丰富的资源、广泛的分布和清洁性成为最具发展潜力的可再生能源之一。进入21世纪以来,全球太阳能光伏发电产业迅速壮大,市场应用规模持续扩大,对后续能源发展的作用日益显著。利用太阳能光伏技术是我国实施资源节约型社会、节能减排、可持续发展战略和改善生存环境的重要措施之一。
在光伏逆变电源并网运行时,其本质上表现为电流源。面对两大挑战:如何有效控制输出电流,同时在尽量减少对电网谐波污染的前提下,满足与电网电压同频同相,成为光伏电源并网运行的关键问题。逆变器作为并网系统的中心装置,其控制和调制技术是并网技术的核心。当前,国内外都在积极研究光伏并网系统,并网可视作与电网的并联操作,通过可控逆变器的控制实现无冲击并网。
本文针对光伏系统中的逆变器,对基于电流跟踪和电压跟踪的PWM控制策略进行了分析,并提出了一种具有功率跟踪功能的新型电流控制策略。PWM调制控制策略不仅能够实现逆变器灵活可靠的控制,还能减少谐波含量,从而提高逆变器输出电能质量。并网逆变器采用的电流控制方式将逆变器输出视为电流源,与电网的并联操作类似于电流源与电压源的并联工作。在并网运行中,只需控制逆变器输出电流的频率和相位,以跟踪电网电压变化,即可达到并联运行的目的。
常见的电流跟踪控制策略包括瞬时值滞环控制方式、三角波比较控制方式和无差拍控制方式等。这些控制策略各有特点,在实现电流跟踪和提高系统性能方面发挥着重要作用。
扩展资料
光伏系统是利用太阳电池组件和其他辅助设备将太阳能转换成电能的系统。一般分为独立系统、并网系统和混合系统。如果根据太阳能光伏系统的应用形式、应用规模和负载的类型可以细致的划分为六种类型。
光伏并网逆变器工作原理
光伏并网逆变器的工作原理主要涉及将直流电转化为标准交流电的过程。首先,直流电通过逆变器转换,如果直流电压较低,如12V或24V,逆变器会通过内置的交流变压器进行升压,以达到220V的交流电压标准。对于大容量逆变器,由于直流母线电压较高,一般无需额外升压即可直接输出交流电。
对于中、小容量逆变器,常用的设计有推挽逆变电路、全桥逆变电路和高频升压逆变电路。推挽电路是基本结构,其中功率晶体管交替工作,形成正负交替的交流输出。它的优点在于电路简单,驱动和控制相对容易,由于变压器的漏感,可以限制短路电流,提高可靠性。然而,推挽电路的变压器利用率低,对感性负载的驱动能力有限。
全桥逆变电路改进了推挽电路,通过调整功率晶体管的脉冲宽度来控制输出交流电压。它具有续流回路,即使在处理感性负载时,电压波形也不会出现畸变。然而,全桥电路的上下桥臂功率晶体管不共地,需要专用驱动电路或隔离电源,以防止上、下桥臂同时导通。这就需要设计死区时间来控制电路的开关顺序,增加了电路的复杂性。
总的来说,光伏并网逆变器的工作原理就是通过这些电路设计,确保从直流电到交流电的高效转换,并在满足不同容量需求的同时,兼顾了输出电压稳定性和电路的可靠性。
扩展资料
我国光伏发电系统主要是直流系统,即将太阳电池发出的电能给蓄电池充电,而蓄电池直接给负载供电,如我国西北地区使用较多的太阳能户用照明系统以及远离电网的微波站供电系统均为直流系统。此类系统结构简单,成本低廉,但由于负载直流电压的不同(如12V、24V、48V等),很难实现系统的标准化和兼容性,特别是民用电力,由于大多为交流负载,以直流电力供电的光伏电源很难作为商品进入市场。
太阳能并网逆变器逆变器的效率
太阳能并网逆变器的核心效能体现在其将直流电转化为交流电的能力。在国际市场上,欧洲的逆变器以其出色的效率脱颖而出,普遍可达97.2%。相比之下,国内市场上主要的带隔离变压器的并网逆变器效率则在92%到96%之间,显示出较高的能量转换效率。值得注意的是,无变压器逆变器的效率可以进一步提升,通常可以超过97%,然而为了实现这一高效能,它们在使用时通常需要配合隔离变压器,以确保系统的稳定运行。
尽管无变压器逆变器在效率上具有优势,但考虑到实际应用中的便利性和兼容性,带隔离变压器的逆变器在国际上仍然是最受欢迎的选择。这种类型的逆变器不仅提供了稳定的转换效果,而且与现有电网系统更为兼容,使得安装和维护更为便捷。
太阳能光伏发电并网逆变器价格大概是多少
组串式逆变器的价格大约为0.32元/瓦,而集中式逆变器的价格则约为0.2元/瓦。因此,一台50千瓦的组串式逆变器的售价大约为16000元,而1000千瓦的集中式逆变器则可能需要20万元。值得注意的是,逆变器的价格会随着容量的减小而升高,这意味着较小的逆变器单瓦成本相对较高。
然而,需要注意的是,这些价格会受到多种因素的影响。不同品牌、元件要求、规格型号以及运输距离等都会对最终价格产生影响。例如,某些品牌可能提供更高效或更耐用的逆变器,这可能会导致更高的价格。同样,如果逆变器需要从远距离运输,则运输成本也会影响最终价格。
在选择逆变器时,消费者需要综合考虑各种因素。除了价格外,还应关注逆变器的性能、能效等级以及售后服务等。此外,不同应用场景也可能需要不同类型的逆变器,因此,在选择之前,最好咨询专业人员的意见。
总而言之,逆变器的价格会因多种因素而有所不同。消费者在购买时应综合考虑各种因素,并选择最适合自己需求的产品。
光伏逆变器是电流源还是电压源?
光伏并网逆变器通常采用电流源并网的方式,这种方式在电力系统中有着广泛应用,能够有效地控制电流输出,适应光伏系统的特性。然而,也有少数光伏并网逆变器采用电压源并网,这种设计在特定条件下能提供更稳定的电压输出,适应不同负载需求。
离网型逆变器,或者说控制逆变一体机,主要采用电压源的方式工作。这种逆变器不依赖于电网,而是将太阳能电池板产生的直流电转换为交流电,直接供给家庭或小型商业设施使用。电压源的逆变器能够提供稳定的电压输出,确保负载设备的正常运行。
电流源逆变器和电压源逆变器在工作原理上有显著差异。电流源逆变器主要通过控制输出电流来调节功率,而电压源逆变器则侧重于控制输出电压。电流源逆变器适用于需要精确控制电流的应用场景,而电压源逆变器则在稳定性要求较高的场合表现出色。
选择电流源或电压源逆变器,取决于具体应用场景的需求。例如,在光伏并网系统中,电流源逆变器能够更好地与电网协同工作,确保电力系统的稳定运行。而在离网型系统中,电压源逆变器能够提供更加稳定可靠的电力输出,保障负载设备的正常运行。
总之,无论是电流源还是电压源逆变器,都是为了实现高效的能量转换和稳定的电力输出。根据不同的应用场景,选择合适的逆变器类型,才能实现最佳的性能和效果。
光伏发电站的逆变器怎么设置
太阳能光伏发电并网系统中的并网逆变器设置方式分为:集中式、主从式、分布式和组串式。
1、集中式
集中式并网方式适合于安装朝向相同且规格相同的太阳能电池方阵,在电气设计时,采用单台逆变器实现集中并网发电方案如图1所示。
对于大型并网光伏系统,如果太阳能电池方阵安装的朝向、倾角和阴影等情况基本相同,通常采用大型的集中式三相逆变器。
该方式的主要优点是:整体结构中使用光伏并网逆变器较少,安装施工较简单;使用的集中式逆变器功率大,效率较高,通常大型集中式逆变器的效率比分布式逆变器要高大约2%左右,对于9.3MWp光伏发达系统而言,因为使用的逆变器台数较少,初始成本比较低;并网接入点较少,输出电能质量较高。该方式的主要缺点是一旦并网逆变器故障,将造成大面积的太阳能光伏发电系统停用。
集中逆变一般用于大型光伏发电站(>10kW)的系统中,很多并行的光伏电池组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP来改善所产出电能的质量,使它非常接近于正弦波电流。
最大特点是系统的功率高,成本低。但受光伏电池组串匹配和部分遮影的影响,导致整个光伏系统的效率不高。同时整个光伏系统的发电可靠性受某一光伏电池单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制,以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高的效率。
在SolarMax(索瑞·麦克)集中逆变器上,可以附加一个光伏电池阵列的接口箱,对每一串的光伏电池组串进行监控,如其中有一组光伏电池组串工作不正常,系统将会把这一信息传到远程控制器上,同时可以通过远程控制将这一串光伏电池停止工作,从而不会因为一串光伏电池串的故障而降低和影响整个光伏系统的工作和能量产出。
2、主从式
对于大型的光伏发电系统可采用主从结构,主从结构其实也是集中式的一种,该结构的主要特点是采用2~3个集中式逆变器,总功率被几个逆变器均分。在辐射较低的时候,只有一个逆变器工作,以提高逆变器在太阳能电池方阵输出低功率时候的工作效率;在太阳辐射升高,太阳能电池方阵输出功率增加到超过一台逆变器的容量时,另一台逆变器自动投入运行。
为了保证逆变器的运行时间均等,主从逆变器可以自动的轮换主从的配置。主从式并网发电原理如图2所示。主从结构的初始成本会比较高,但可提高光伏发电系统逆变器运行时的效率,对于大型的光伏系统,效率的提高能够产生较大的经济效益。
3、分布式
分布式并网发电方式适合于在安装不同朝向或不同规格的太阳能电池方阵,在电气设计时,可将同一朝向且规格相同的太阳能电池方阵通过单台逆变器集中并网发电,大型的分布式系统主要是针对太阳能电池方阵朝向、倾角和太阳阴影不尽相同的情况使用的。
分布式系统将相同朝向,倾角以及无阴影的光伏电池组件串成一串,由一串或者几串构成一个太阳能电池子方阵,安装一台并网逆变器与之匹配。分布式并网发电原理如图3所示。这种情况下可以省略汇线盒,降低成本;还可以对并网光伏发电系统进行分片的维修,减少维修时的发电损失。
分布式并网发电的主要缺点是:对于大中型的上百千瓦甚至兆瓦级的光伏发电系统,需要使用多台并网逆变器,初始的逆变器成本可能会比较高;因为使用的逆变器台数较多,逆变器的交流侧和公用电网的接入点也较多,需要在光伏发电系统的交流侧将逆变器的输出并行连接,对电网质量有一定影响。
4、组串式
光伏并网组串逆变器是将每个光伏电池组件与一个逆变器相连,同时每个光伏电池组件有一个单独的最大功率峰值跟踪,这样光伏电池组件与逆变器的配合更好。组串逆变器已成为现在国际市场上最流行的逆变器,组串逆变器是基于模块化概念基础上的,每个光伏组串(1kW~5kW)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网。许多大型光伏阀电厂使用组串逆变器,优点是不受光伏电池组串间差异和遮影的影响。
在组串间引入“主-从”概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏电池组串联系在一起,让其中一个或几个工作,从而产出更多的电能。最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。
多组串逆变是取了集中逆变和组串逆变的优点,避免了其缺点,可应用于几千瓦的光伏发电站。在多组串逆变器中,包含了不同的单独功率峰值跟踪DC/DC变换器,DC/DC变换器的输出通过一个普通的逆变器转换成交流电与电网并联。由于是在交流处并联,这就增加了交流侧的连线的复杂性,维护困难。
另需要解决的是怎样更有效的与电网并网,简单的办法是直接通过普通的交流开关进行并网,这样就可以减少成本和设备的安装,但往往各地的电网的安全标准也许不允许这样做。另一和安全有关的因素是是否需要使用隔离变压器(高频或低频),或允许使用无变压器式的逆变器。
光伏组串的不同额定值(如:不同的额定功率、每组串不同的组件数、组件的不同的生产厂家等)、不同的尺寸或不同技术的光伏组件、不同方向的组串(如:东、南和西)、不同的倾角或遮影,都可以被连在一个共同的逆变器上,同时每一组串都工作在它们各自的最大功率峰值上。同时,直流电缆的长度减少、将组串间的遮影影响和由于组串间的差异而引起的损失减到最小。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467