发布时间:2024-11-24 14:50:17 人气:
交流永磁同步电机伺服系统的介绍
交流永磁同步电机伺服系统由DSP控制板、旋转变压器、主功率电路、调理和保护电路组成。电机本体包括电枢绕组和永磁体铁心转子,转子采用永磁体励磁。DSP实现磁场定向控制算法、通讯、电流采样计算和驱动配置输出。旋转变压器的输出通过四路DA转换芯片与DSP的SPI或多通道缓冲处理,实现数据传输至DSP。DSP输出脉宽调制信号,连接电流调节器输出电压信号,并通过CLARK反变换转换为三相开关信号PWM1-PWM3,驱动逆变器输出至电枢绕组,从而控制电机产生圆形磁场。主功率电路包括可控整流直流侧、逆变器、电流检测电路、过压放电回路、保护电路和驱动电路,采用磁场定向控制算法。
简介:
交流同步伺服驱动系统常用的交流永磁同步伺服电动机分为两大类。第一类是无刷直流电动机(BLDCM),它使用永磁体转子替代有刷直流电动机的定子磁极,并将直流电动机的电枢变为定子。无刷直流电动机直接输入方波电流(实际上是梯形波)到定子,省去了机械换向器和电刷。第二类是三相永磁同步电动机(PM·SM),它要求输入定子绕组的电源为三相正弦波形。
永磁同步电机的磁场来源于转子上的永久磁铁,永磁材料的类型很大程度上决定了电机特性。目前采用的永磁材料主要有铁淦氧、铝镍钴、钕铁硼以及SmCO5和Sm2CO17。转子上安装永磁铁的方式有两种:外装式和内装式。根据确定的转子结构,三相永磁同步电动机可分为正弦波型和方波型,前者每相励磁磁动势分布为正弦波状,后者为方波状。
两类永磁AC同步伺服电动机的差异在于控制原理相似,都通过给定指令信号、位置反馈信号比较和伺服控制实现位置要求。方波无刷直流电动机具有控制简单、成本低等优点,但因电磁脉动限制了在高精度、高性能要求的伺服驱动场合的应用。而PM、SM伺服系统要求定子输入三相正弦波电流,具有更优越的低速伺服性能,因此广泛应用于数控机床、工业机器人等高性能高精度的伺服驱动系统中。
淄博卡特风力发电机有限公司CAT风力发电机产品优势
淄博卡特风力发电机有限公司的CAT风力发电机产品具备显著的优势。其内部转子选用高品质的38SH高强稀土钕铁硼永磁磁钢,具有高剩磁强度,即使在120℃高温下仍保持稳定。磁钢采用插入镶嵌式设计,形成锥形斜面,避免了传统打孔安装方式可能导致的磁钢完整性受损,这使得磁场强度得以提升,磁力线更加平行,从而大大提高发电效率。
电机内部锭子采用冷轧硅钢片,采用斜槽Y2槽设计,磁饱和点高,导磁性能优良。这种斜槽结构在切割磁力线时,能有效减小启动扭矩,使得即使在低风速条件下也能稳定运行。电机在磁通密度和频率相同的情况下,损耗低,发热量小,结构均匀,有利于延长绝缘体膜的使用寿命。
尾翼部分,采用静电喷塑处理,提升了偏航性能。尾翼尾板一体成型,增强了抗风力,不易受到损坏。针对不同机型,公司提供了风光互补高性能控制器,适用于5KW以下机型,具有完善的保护功能和LCD液晶显示,确保系统的可靠性。同时,微电脑智能控制器适用于10KW以上型号,采用PLC可编程逻辑控制,配合真彩色触摸屏,能精确控制电机运行。
整流部件具备温度检测功能,适应宽广的输入电压范围24-1700V。高精度12位传感器能综合风速、风向、电流和电压等多因素进行智能控制,确保偏航精度达到1度,最大化发电功率。此外,纯正弦波逆变器采用工频环形变压器,逆变效率高,空载损耗低,且配备完善的保护和报警功能,保证系统稳定性。液晶显示清晰显示蓄电池电压,输出波形为纯正弦波,负载效果更佳。
最后,公司位于山东省淄博市桓台县振华路143号的现代化厂房,为产品的研发和生产提供了坚实的基础。
电动机的基本结构
无刷直流电动机
一、概述
直流电动机的主要优点是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严重地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。
随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。又具有交流电动机结构简单、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。
元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。
二、无刷直流电动机的基本结构和类型
(一)基本结构
无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。其基本结构如图5一20所示。
电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成的一对磁极。转子位置传感器也由定子、转子两部分组成。定子安装在主电动机壳内,转子和主转子同轴旋转。它的作用是把主转子的位置检测出来.变成电信号去控制电子开关电路,故也称转子位置检测器。电子开关电路中的功率开关元件分别与主定子上各相绕组相连接.通过位置传感器输出的信号,控制三极管的导通和截止.从而使主定子上各相绕组中的电流也随着转子位置的改变,按一定的顺序进行切换,实现无接触式的换向。
l.电机本体
元刷直流电动机是将普通直流电动机的定予与转子进行了互换。其转子为永久磁铁,产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。
无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。
2.转子位置传感器
转子位置传感器是无刷直流电动机的一个关键部件。可根据不同的原理构成如电磁感应式、光电式、磁敏式等多种不同的结构形式。其中,电磁感应式工作可靠,维护简便,寿命长.所以应用较多。它决定着电枢各相绕组开始通电的时刻。它的作用相当于一般直流电动机中的电刷。改变位置检测器产生信号的时刻(相位).相当于直流电动机中改变电刷在空间的位置,对无刷直流电动机的特性有很大的影响。
位置传感器一般也由定子和转子两部分组成。转子是用来确定电动机本体磁极的位置,定子的安放是为了检测和输出转子的位置信号。传感器种类较多.且各具特点。目前在无刷直流电动机中常用的位置传感器有以下几种形式。
(1)电磁式位置传感器。是一种利用电磁效应来实现位置测量的传感元件,有开口变压器、铁磁谐振电路、接近开关等多种形式,其中开_j变压器使用较多。
电磁感应式转子位置传感器原理如图j 2l所示。其定子由原边线圈与副边线圈绕在同一铁芯组成,转子则由一个具有一定角度(近似电动机的导通角)的导磁捌料组成,该导磁材料可由铁氧体或硅钢片制成。在线圈的原边wl端输入高频激磁信号.在副边线圈中感应出耦合转子铁芯与定子铁芯相对位置的输出信号,图中的wa经过电子线路处理,变成与电动机定子、转子位置相对应的电平信号,再经整形处理,就得到了电动机的换向信号。而没有耦合转子铁芯的定子线圈Wb、Wc均无信号输出。
电磁式位置传感器具有输出信号大、工作可靠、寿命长、使用环境要求不高、适应性强、结构简单和紧凑等优点,但这种传感器信噪比较低.体积较大.而且其输出波形为交流,一般需经整流、滤波后方可使用,因而极大地限制了其在普通情况下的应用。
(2)磁敏式位置传感器。磁敏传感器利用电流的磁效应进行工作,所组成的位置检测器由与电机同轴安装、具有与电机转子同极数的永磁检测转子和多只空问均匀分布的磁敏元件构成。目前常用的磁敏元件为霍尔元件或霍尔集成电路,它们在磁场作用下会产生霍尔电
势,经整形、放大后即可输出所需电平信号,构成了原始的位置信号。图5-22为霍尔集成电路及其开关型输出特性。
为了获得三组互差120°电角度、宽180度电角度的方波原始位置信号。需要3只在空间互差机械角度分布霍尔元件,其中户为电机极对数。图5-23给出了一台四极电动机的霍尔位置检测器完整结构,3个霍尔元件Hl、H2、H3在空间互差60°机械角度分布。当永磁检测转子依次经过霍尔元件时。根据极性的不同,产生出三相互差120°电角度、宽180°电角度的方波位置信号,它正好反映了同轴安装的电动机转子磁极的空间位置信息。经整形电路和逻辑电路后,输出6路功率电子开关的触发信和逻辑电路号。霍尔位置检测器是永磁无刷直流电动机中采用较多的一种。
(3)光电式位置传感器和光电式位置传感元件的结构。这是一种利用与电动机转子同轴安装、带缺口旋转圆盘对光电元件进行通、断控制.以产生一系列反映转子空间位置脉冲信号的检测方式。由于三相永磁元刷直流电动机一般每l/6周期换相一次,因此只要采用与电磁式或霍尔式位置检测相似的简单检测方法即可,不必采用光电编码盘的复杂方式。简单光电元件的结构如图5一24所示.由红外发光二极管和光敏三极管构成。当元件凹槽内光线被圆盘挡住时,光敏三极管不导通:当凹槽内光线
由圆盘缺口放过时,光敏三极管导通.以此输出开关型的位置信号。圆盘缺口弧度及光电元件空间布置规律和开口变压器式位置检测器相同。
除了以上3种位置传感器外,还有正、余弦旋转变压器和光电编码器等其他位置传感元件,但成本高、体积大、线路复杂,较少采用。由于位置检测器有机械安装、维护及运行可靠性等问题.因此近期来出现了元位置检测器。
元位置传感器检测技术的成功运用解决了位置传感器安装难的问题,而且减小了体积,提高了可靠性,受到了国内外的普遍关注。目前较为常用的方法有:反电动势检测法、续流二极管工作方式检测法、定子三次谐波检测法和瞬时电压方程法等。
必须注意:通过各种方法所得到的位置信号一般不能直接用来控制功率管的通断.往往需要经过一定的逻辑处理后才能作用于逻辑控制单元。
3.电子换向电路
无刷直流电动机的电子换相线路是用来控制电动机定子绕组通电的顺序和导通的时间。主要由功率开关管和逻辑控制电路组成.功率开关单元是核心部分.其功能是将电源的功率以一定的逻辑关系分配给无刷直流电动机定子E的各项绕组,从而使电动机产生持续不断的转矩。控制部分是将通过位置检测得到的信号.根据需要转化成相应的脉冲信号去驱动功率开关管。目前,无刷直流电动机的主开关一般采用IGBT或M0sFET等全控型器件,有些主电路已经有了集成功率模块(PIc)和智能功率模块(IPM),它们的应用可以使整个系统的呵靠性大幅度提高。
(=)无刷直流电动机的类型
近年来出现的元刷直流电动机,用晶体管开关电路和位置传感器代替电刷和换向器。无刷直流电动机的类型按晶体管开关电路的不同可分为桥式和非桥式两种;按所使用的位置传感器形式的不同可分为光电式、电磁式、磁敏元件式和接近开关式等。
三、无刷直流电动机的基本工作原理
在实际应用中,永磁无刷直流电动机多采用三相桥式功率主电路形式,但为了便于说明,先从三相半桥式主电路开始分析其运行原理。
1.三相半桥主电路
图5-25为三相半桥式永磁无刷直流电机(P=1)三只光电式位置传感元件H1 H2 H3 空间互差120°均匀分布,宽180°缺口遮光圆盘与电动机转子同轴安装,调整圆盘缺口与转子磁极的相对位置,使缺口边沿能反映转子磁极的空间位置。
该缺口位置使光电元件H1受光而输出高电平,触发导通功率开关VTl使直流电流流入A相绕组Ax,形成位于A相绕组轴线上的电枢磁势。此时圆盘缺口与转子磁极的相对位置被调整得使转子永相绕组平面磁势Ff位于B相绕组B-X平面上所示,如图5—26(a)所示两者相互作用产生驱动转矩,驱使转子顺时针旋转。当转子磁极转至图5 26(b)所示的位置时,如仍保持A相绕组通电,则电枢磁势Ff的空间角度讲减为30°并继续减小,最终造成驱动转矩消失。然而由于同轴安装的旋转圆盘同步旋转,此时正好使光电元件H2受光,H1遮光,从而功率开关VT2导通,电流从A相绕组断开转而流人B相绕组B-Y,电流换相,电枢磁势变为Fb它又在旋转方向上重新领先永磁磁势Ff150°相,两者相互作用产生驱动转矩,驱使转子顺时针继续旋转。当转子磁极旋转到图5—26(c)所示的位置时,同理又发生电枢电流从B相向c相的换流,保证了电磁转矩的持续产生和电动机的继续旋转,直至重新回到图5—26(d)或图5-26(a)的起始位置。
可以看出,由于同轴安装转子位置检测圆盘的作用,定子各相绕组在位置检测器的控制下依次馈电,其相电流为120°宽的矩形波,如图5—27所示。这样的三相电流使得定子绕组产生的电枢磁场和转动中的转子永磁磁场在空间始终能保持近似垂直的关系,为最大限度地产生转矩创造了条件。同时也可以看出.经历换相过程的定子绕组电枢磁场不是匀
速旋转磁场而是跳跃式的步进磁场,转子旋转一周的范围内有3种磁状态,每种状态持续1/3周期(120。电角度).如图5 26中FA、FB、Fc所示。可以想象,由此产生的电磁转矩存在很大的脉动.尤其低速运行时会使转速波动。为了解决这个问题,只有增加转子一周内的磁状态数,此时应采用三相桥式主电路结构。
2.三相桥式主电路
三相桥式主电路如图5一28所示,功率电子开关为标准三相桥式结构,上桥臂元件VTl、 VT3、VT5给各相绕组提供正向电流,产生正向电磁转矩;下桥臂元件VT4、VT6、VT2 给各相绕组提供反向电流,在相同极性转子永磁磁场作用下将产生反向电磁转矩。功率元件通电方式有两两通(120。导通型)和三三通电(180。导通型),其输出转矩大小不同。
(1)两两通电方式。所谓两两导通方式是指每一瞬间有两个功率管导通,每隔1/6周期(60°)电角度)换相一次,每次换相一个功率管,不同桥臂之间左右换相。每个功率管导通120°电角度。功率管的导通顺序依次为:vTl、vT2;vT2、vT3;vT3、vT4;vT4
VT5;VT5、VT6;VT6、VTl..…·在这种通电方式下各导通120°电角度,每个相绕组又与
两个开关元件相连,各相绕组会在正、反两个方向均流过120°宽的方波电流,三相绕组中电流波形如图5—29所示。
由于任一时刻均有一个上桥臂元件导通使某相绕组获得正向电流产生正转矩,又有一个下桥臂元件导通使另一相绕组获得反向电流产生负转矩,此时的合成转矩应是相关相绕组通电产生的正、负转矩的矢量和,如图5—30所示。可以看出,合成转矩是一相通电时所产生转矩的√3倍,每经过一次换相合成转矩方向转过60°电角度。一个输出周期内转矩要经历方向变换6次,从而使转矩脉动比三相半桥主电路时要平缓得多。
(2)三三通电方式。所谓三三导通方式是指每一瞬间有3个功率管导通,每隔l/6周期(60°)电角度)换相一次.每次换相是同一桥臂的上下管之间换相.每个功率管导通180°电角度。功率管的导通顺序依次为:VTl、VT2、VT3;VT2、VT3、VT4;VT3、VT4、VT5;VT4、VT5、VT6;VT5、VT6、VTl;VT6、VTl、VT……:可见这种方式运转一个周期,转子合成驱动转矩的图示与两两方式下是一致的,均为6种状态,不同的是此时的合成转矩的幅值是单相绕组转矩幅值的1.5倍,这是由于三相电流同时作用的结果,电动机在运行过程中的转矩矢量合成图如图5-31所示。
虽然三相永磁无刷直流电动机是应用最广泛的一种,但人们从减少转矩的脉动、扩大单机容量等角度出发,开发出了多相电动机,如四相、五相,甚至十相、十二相电动机。为了提高电动机绕组的利用率,应采用多相同时通电运行的方式。
直流电动机的调速方法有哪些?各有什么特点?
直流电动机的调速方法:一,可以直接使用调压器改变输入电压调速,常用于千瓦级别电机。
二,可控硅移相调速几十千瓦到几百千瓦级别电机调速。
三,脉宽调速几十瓦到几百瓦级别电机调速。四改变电刷位置调速特殊电机比方汽车雨刷器电机。
特点:
1.调压器改变输入电压调速:1、弱磁调速,改变历磁电压,降压就升速,升压就降速。 2、改变电枢电压,升压就升速,降压就降速,这个采用得很多。 总之改变电压必需要有一个调压装置,可以是串电阴,可以是用直流调压器。 但在弱磁调速中,历磁电压一定要有,如果没有历磁电压将会产生飞车,那是很危险的。
2、可控硅移相调速: 移相触发是可控硅控制的一种方式,其是通过控制可控硅的导通角大小来控制可控硅的导能量,从而改变负载上所加的功率。特点控制波动小,使输出电流、电压平滑升降。
3、脉宽调速:一,可以直接使用调压器改变输入电压调速,常用于千瓦级别电机。二,可控硅移相调速几十千瓦到几百千瓦级别电机调速。三,脉宽调速几十瓦到几百瓦级别电机调速。四改变电刷位置调速特殊电机比方汽车雨刷器电机。
直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、他励和自励3类,其中自励又分为并励、串励和复励3种。
基本介绍
直流电动机就是将直流电能转换成机械能的电机。直流电机的励磁方式是指对励磁绕组如何供电、产生励磁磁通势而建立主磁场的问题。
根据励磁方式的不同,直流电机可分为下列几种类型:
1.他励直流电机
励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机,图中M表示电动机,若为发电机,则用G表示。永磁直流电机也可看作他励直流电机。
2.并连直流电机
并励直流电机的励磁绕组与电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。
3.串连直流电机
串励直流电机的励磁绕组与电枢绕组串联后,再接于直流电源,这种直流电机的励磁电流就是电枢电流。
4.复连直流电机
复连直流电机有并励和串励两个励磁绕组,若串励绕组产生的磁通势与并励绕组产生的磁通势方向相同称为积复励。若两个磁通势方向相反,则称为差复励。
不同连磁方式的直流电机有着不同的特性。一般情况直流电动机的主要励磁方式是并励式、串励式和复励式,直流发电机的主要励磁方式是他励式、并励式和和复励式。
特点
(一)调速性能好。所谓“调速性能”,是指电动机在一定负载的条件下,根据需要,人为地改变电动机的转速。直流电动机可以在重负载条件下,实现均匀、平滑的无级调速,而且调速范围较宽。
(二)起动力矩大。可以均匀而经济地实现转速调节。因此,凡是在重负载下起动或要求均匀调节转速的机械,例如大型可逆轧钢机、卷扬机、电力机车、电车等,都用直流电动机拖动。
折叠编辑本段基本构造
分为两部分:定子与转子。记住定子与转子都是由那几部分构成的,注意:不要把换向极与换向器弄混淆了,记住他们两个的作用。
定子包括:主磁极,机座,换向极,电刷装置等。
转子包括:电枢铁芯,电枢绕组,换向器,轴和风扇等。
折叠编辑本段基本特点
1)电枢轴要延长,以便安装用于速度检测的脉冲发生器和推力轴接头。
2)转子直径要设计得小些,轴长要设计得长些,以适应高速旋转。
3)为了便于散热,电枢槽要设计得多些。
4)为了方便对换向器片、电刷等进行定期检查和维护,检查口应制造得大些。
5)为了防止由于振动而引起电刷的误动作,应提高电刷的预紧压力。
6)和其他电动汽车用电机相同,最大功率和额定功率记录在铭牌上。[1]
折叠编辑本段机械特性
电动机的转速n随转矩T而变化的特性n=f(T)称为机械特性。它是选用电动机的一个重要依据。各类电动机都因有自己的机械特性而适用于不同的场合。几种直流电动机的机械特性见图2、调速从直流电动机的电枢回路看,电源电压U与电动机的反电动势Eа和电枢电流Zа在电枢回路电阻Rа上的电压降必须平衡。即U=Ed+IdRd
反电动势又与电动机的转速n和磁通φ有关,电枢电流又与机械转矩M和磁通φ有关。即 z4系列直流电动机
Ed=Cφn,M=CφId,式中C为常数。由此可得式中n0为空载转速,k 为Rа/C2。以上是未考虑铁心饱和等因素时的理想关系,但对实际直流电动机的分析也有指导意义。由上可见直流电动机有3种调速方法:调节励磁电流、调节电枢端电压和调节串入电枢回路的电阻。调节电枢回路串联电阻的办法比较简便,但能耗较大;z4系列直流电动机且在轻负载时,由于负载电流小,串联电阻上电压降小,故转速调节很不灵敏。调节电枢端电压并适当调节励磁电流,可以使直流电动机在宽范围内平滑地调速。端电压加大使转速升高,励磁电流加大使转速降低,二者配合得当,可使电机在不同转速下运行。调速中应注意高速运行时,换向条件恶化,低速运行时冷却条件变坏,从而限制了电动机的功率。串励直流电动机由于它的机械特性(图2)接近恒功率特性,低速时转矩大,故广泛用于电动车辆牵引,在电车中常用两台或两台以上既有串励又有并励的复励直流电动机共同驱动。利用串、并联改接的方法使电机端电压成倍地变化(串联时电动机端电压只有并联时的一半),从而可经济地获得更大范围的调速和减少起动时的电能消耗。
折叠编辑本段主要分类
1.无刷直流电动机:无刷直流电动机是将普通直流电动机的定子与转子进行了互换。其转子为永久磁铁产生气隙磁通:定子为电枢,由多相绕组组成。在结构上,它与永磁同步电动机类似。
无刷直流电动机定子的结构与普通的同步电动机或感应电动机相同.在铁芯中嵌入多相绕组(三相、四相、五相不等).绕组可接成星形或三角形,并分别与逆变器的各功率管相连,以便进行合理换相。转子多采用钐钴或钕铁硼等高矫顽力、高剩磁密度的稀土料,由于磁极中磁性材料所放位置的不同.可以分为表面式磁极、嵌入式磁极和环形磁极。由于电动机本体为永磁电机,所以习惯上把无刷直流电动机也叫做永磁无刷直流电动机。
2.有刷直流电动机:有刷电动机的2个刷(铜刷或者碳刷)是通过绝缘座固定在电动机后盖上直接将电源的正负极引入到转子的换相器上,而换相器连通了转子上的线圈,3个线圈极性不断的交替变换与外壳上固定的2块磁铁形成作用力而转动起来。由于换相器与转子固定在一起,而刷与外壳(定子)固定在一起,电动机转动时刷与换相器不断的发生摩擦产生大量的阻力与热量。所以有刷电机的效率低下损耗非常大。但是,他同样具有,制造简单,成本及其低廉的优点!
折叠编辑本段主要特性
电动机的转速n随转矩T而变化的特性n=f(T)称为机械特性。它是选用电动机的一个重要依据。各类电动机都因有自己的机械特性而适用于不同的场合。几种直流电动机的机械特性见图2。
调速 从直流电动机的电枢回路看,电源电压U与电动机的反电动势Eа和电枢电流Zа在电枢回路电阻Rа上的电压降必须平衡。即U=Ed+IdRd
反电动势又与电动机的转速n和磁通φ有关,电枢电流又与机械转矩M和磁通φ有关。即 z4系列直流电动机
Ed=C
M=Cd式中C
为常数。由此可得式中n0为空载转速,k 为Rа/C2。以上是未考虑铁心饱和等因素时的理想关系,但对实际直流电动机的分析也有指导意义。由上可见直流电动机有3种调速方法:调节励磁电流、调节电枢端电压和调节串入电枢回路的电阻。调节电枢回路串联电阻的办法比较简便,但能耗较大;
且在轻负载时,由于负载电流小,串联电阻上电压降小,故转速调节很不灵敏。调节电枢端电压并适当调节励磁电流,可以使直流电动机在宽范围内平滑地调速。端电压加大使转速升高,励磁电流加大使转速降低,二者配合得当,可使电机在不同转速下运行。调速中应注意高速运行时,换向条件恶化,低速运行时冷却条件变坏,从而限制了电动机的功率。串励直流电动机由于它的机械特性(图2)接近恒功率特性,低速时转矩大,故广泛用于电动车辆牵引,在电车中常用两台或两台以上既有串励又有并励的复励直流电动机共同驱动。利用串、并联改接的方法使电机端电压成倍地变化(串联时电动机端电压只有并联时的一半),从而可经济地获得更大范围的调速和减少起动时的电能消耗。
折叠编辑本段其他资料
折叠起动
由于电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机(起动电流为额定电流的6~8倍)。
为了限制起动电流,常在电枢回路内串入专门设计的可变电阻,其原理接线见图1。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电动机中。但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电动机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。
对容量较大的直流电动机,通常采用降电压起动。即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速。此种方法电源设备比较复杂。
折叠控制结构
直流无刷电机的控制结构,直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响,N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),
控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
直流无刷驱动器包括电源部及控制部:电源部提供三相电源给电机,控制部则依需求转换输入电源频率。电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),作为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。
折叠控制原理
直流无刷电机的控制原理,要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下
臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。
基本上功率晶体管的开法可举例如下:AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL一组,但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。
当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(Command)与hall-sensor信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL或AH、CL或BH、CL或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM来完成。PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心。
高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。至于低转速的速度控制尤其是低速起动则因为回传的hall-sensor信号变化变得更慢,怎样撷取信号方式、处理时机以及根据电机特性适当配置控制参数值就显得非常重要。或者速度回传改变以encoder变化为参考,使信号分辨率增加以期得到更佳的控制。电机能够运转顺畅而且响应良好,P.I.D.控制的恰当与否也无法忽视。之前提到直流无刷电机是闭回路控制,因此回授信号就等于是告诉控制部现在电机转速距离目标速度还差多少,这就是误差(Error)。知道了误差自然就要补偿,方式有传统的工程控制如P.I.D.控制。但控制的状态及环境其实是复杂多变的,若要控制的坚固耐用则要考虑的因素恐怕不是传统的工程控制能完全掌握,所以模糊控制、专家系统及神经网络也将被纳入成为智能型P.I.D.控制的重要理论。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467