湖北仙童科技有限公司
全国咨询热线:0722-7600323

逆变器 型等效电路

发布时间:2024-11-13 08:00:18 人气:

UPS的电路

       UPS即不间断电源(ups不间断电源),该装置可以保障计算机系统停电后,用户还能再工作一段时间紧急存盘,不会因为停电而影响工作或使数据丢失。当市电输入正常时,ups可将市电稳压后提供给负载使用,此时ups(ups稳压电源)被当做交流市电稳压器,与此同时还向机内电池充电。当市电中断时,UPS 便立即将机内电池的电能向负载继续供电,使负载保持正常工作状态,并保护负载、软件、硬件不被损坏。UPS 设备通常对电压过大或电压太低都可以提供保护,本文主要介绍了一种实用ups电源电路图及电路工作原理。 

       在使用ups电源(ups电源的作用)时,我们要留意以下几个注意事项: 1)UPS的输出负载控制在60%左右为最佳,可靠性最高。 2)UPS放电后应及时充电,避免电池因过度自放电而损坏。 3)UPS的使用环境应注意通风良好,利于散热,并保持环境的清洁。 4)切勿带感性负载,如点钞机、日光灯、空调等,以免造成损坏。 

       5)UPS带载过轻(如1000VA的UPS带100VA负载)有可能造成电池的深度放电,会降低电池的使用寿命,应尽量避免。 

       6)对于多数小型UPS,上班再开UPS,开机时要避免带载启动,下班时应关闭UPS;对于网络机房的UPS,由于多数网络是24小时工作的,所以UPS也必须全天候运行。 

       7)适当的放电,有助于电池的激活,如长期不停市电,每隔三个月应人为断掉市电用UPS带负载放电一次,这样可以延长电池的使用寿命。 一、UPS电源系统组成 

       UPS电源系统由4部分组成:整流、储能、变换和开关控制。其系统的稳压功能通常是由整流器完成的,整流器件采用可控硅或高频开关整流器,本身具有可根据外电的变化控制输出幅度的功能,从而当外电发生变化时(该变化应满足系统要求),输出幅度基本不变的整流电压。 

       净化功能由储能电池来完成,由于整流器对瞬时脉冲干扰不能消除,整流后的电压仍存在干扰脉冲。储能电池除可存储直流直能的功能外,对整流器来说就象接了一只大容器电容器,其等效电容量的大小,与储能电池容量大小成正比。 

       由于电容两端的电压是不能突变的,即利用了电容器对脉冲的平滑特性消除了脉冲干扰,起到了净化功能,也称对干扰的屏蔽。频率的稳定则由变换器来完成,频率稳定度取决于变换器的振荡频率的稳定程度。为方便UPS电源系统的日常操作与维护,设计了系统工作开关,主机自检故障后的自动旁路开关,检修旁路开关等开关控制。

直流变频和交流变频的原理是什么

       变频器工作原理

       主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类[1]:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。

       (1)整流器:最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。

       (2)平波回路:在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。

       (3)逆变器:同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。

       控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。

       (1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。

       (2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。

       (3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。

       (4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

       变频器基础原理知识

        1、什么是变频器?[1]

        变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异

       变频器

       步电机的软起动、变频调速、提高运转精度、改变功率因素、过流/过压/过载保护等功能。国内技术较领先的品牌有汇川、欧瑞(原烟台惠丰)、三晶、蓝海华腾。

        2、PWM和PAM的不同点是什么?

        PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。

        PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。

        3、电压型与电流型有什么不同?

        变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。

        4、为什么变频器的电压与频率成比例的改变?

        任何电动机的电磁转矩都是电流和磁通相互作用的结果,电流是不允许超过额定值的,否则将引起电动机的发热。因此,如果磁通减小,电磁转矩也必减小,导致带载能力降低。

        由公式E=4.44*K*F*N*Φ 可以看出,在变频调速时,电动机的磁路随着运行频率fX是在相当大的范围内变化,它极容易使电动机的磁路严重饱和,导致励磁电流的波形严重畸变,产生峰值很高的尖峰电流。

        因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

        5、电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?

        频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。

        6、采用变频器运转时,电机的起动电流、起动转矩怎样?

        采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动时,起动电流为额定电流6~7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。

        7、V/f模式是什么意思?

        频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。

        8、按比例地改V和f时,电机的转矩如何变化?

        频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法。

        9、在说明书上写着变速范围60~6Hz,即10:1,那么在6Hz以下就没有输出功率吗?

        在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.5~3Hz。.

        10、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以?

        通常情况下时不可以的。在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在 高速下要求相同转矩时,必须注意电机与变频器容量的选择。

        11、所谓开环是什么意思?

        给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环 ”,不用PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机种利用选件可进行PG反馈.无速度传感器闭环控制方式是根据建立的数学模型根据磁通推算电机的实际速度,相当于用一个虚拟的速度传感器形成闭环控制。

        12、实际转速对于给定速度有偏差时如何办?

        开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%~5%)变动。对于要求调速精度比较高,即使负载变动也要求在近于给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件)。

        13、如果用带有PG的电机,进行反馈后速度精度能提高吗?

        具有PG反馈功能的变频器,精度有提高。但速度精度的值取决于PG本身的精度和变频器输出频率的分辨率。

        14、失速防止功能是什么意思?

        如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。

        15、有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什么意义?

        加减速可以分别给定的机种,对于短时间加速、缓慢减速场合,或者对于小型机床需要严格给定生产节拍时间的场合是适宜的,但对于风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定。

        16、什么是再生制动?

        电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动。

        17、是否能得到更大的制动力?

        从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%。如采用选用件制动单元,可以达到50%~100%。

        18、请说明变频器的保护功能

        保护功能可分为以下两类:

        (1) 检知异常状态后自动地进行修正动作,如过电流失速防止,再生过电压失速防止。

        (2) 检知异常后封锁电力半导体器件PWM控制信号,使电机自动停车。如过电流切断、再生过电压切断、半导体冷却风扇过热和瞬时停电保护等。

        19、为什么用离合器连续负载时,变频器的保护功能就动作?

        用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转。

        20、在同一工厂内大型电机一起动,运转中变频器就停止,这是为什么?

        电机起动时将流过和容量相对应的起动电流,电机定子侧的变压器产生电压降,电机容量大时此压降影响也大,连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转。

        21、什么是变频分辨率?有什么意义?

        对于数字控制的变频器,即使频率指令为模拟信号,输出频率也是有级给定。这个级差的最小单位就称为变频分辨率。

        变频分辨率通常取值为0.015~0.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0 Hz,因此电机的动作也是有级的跟随。这样对于像连续卷取控制的用途就造成问题。在这种情况下,如果分辨率为0.015Hz左右,对于4级电机1个级差为1r/min 以下,也可充分适应。另外,有的机种给定分辨率与输出分辨率不相同。

        22、装设变频器时安装方向是否有限制。

        变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。

        23、不采用软起动,将电机直接投入到某固定频率的变频器时是否可以?

        在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(6~7倍额定电流),由于变频器切断过电流,电机不能起动。

        24、电机超过60Hz运转时应注意什么问题?

        超过60Hz运转时应注意以下事项:

        (1)机械和装置在该速下运转要充分可能(机械强度、噪声、振动等)。

        (2)电机进入恒功率输出范围,其输出转矩要能够维持工作(风机、泵等轴输出功率于速度的立方成比例增加,所以转速少许升高时也要注意)。

        (3)产生轴承的寿命问题,要充分加以考虑。

        (4)对于中容量以上的电机特别是2极电机,在60Hz以上运转时要与厂家仔细商讨。

       编辑本段变频器工作原理

       概述

        主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类[1]:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。

       整流器

        最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。

       平波回路

        在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。

       逆变器

        同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。

        控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。

        (1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。

        (2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。

        (3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。

        (4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。

        (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。 [2]

       编辑本段变频器的作用

        变频器集成了高压大功率晶体管技术和电子控制技术,得到广泛应用。变频器的作用是改变交流电机供电的频率和幅值,因而改变其运动磁场的周期,达到平滑控制电动机转速的目的。变频器的出现,使得复杂的调速控制简单化,用变频器+交流鼠笼式感应电动机组合替代了大部分原先只能用直流电机完成的工作,缩小了体积,降低了维修率,使传动技术发展到新阶段。[3]

        变频器可以优化电机运行,所以也能够起到增效节能的作用。根据全球著名变频器生产企业ABB的测算,单单该集团全球范围内已经生产并且安装的变频器每年就能够节省1150亿千瓦时电力,相应减少9,700万吨二氧化碳排放,这已经超过芬兰一年的二氧化碳排放量。[4]

       编辑本段变频器的组成

        变频器通常分为4部分:整流单元、高容量电容、逆变器和控制器。

        □ 整流单元将工作频率固定的交流电转换为直流电。

        □ 高容量电容存储转换后的电能。

        □ 逆变器由大功率开关晶体管阵列组成电子开关,将直流电转化成不同频率、宽度、幅度的方波。

        □ 控制器按设定的程序工作,控制输出方波的幅度与脉宽,使叠加为近似正弦波的交流电,驱动交流电动机。

       编辑本段变频器控制方式

        低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。

        1U/f=C的正弦脉宽调制(SPWM)控制方式

        其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。

        2电压空间矢量(SVPWM)控制方式

        它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。

        矢量控制(VC)方式

        矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

        直接转矩控制(DTC)方式

        1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。 直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。

        矩阵式交—交控制方式

        VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:

        ——控制定子磁链引入定子磁链观测器,实现无速度传感器方式;

        ——自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;

        ——算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;

        ——实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。

        矩阵式交—交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。

        单元串联型变频器

        这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。

        整套变频器共有18个功率单元,每相由6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。

        变频器的输入部分是一台移相变压器,原边Y形连接,副边采用沿边三角形连接,共18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有6副三相小绕组,之间均匀相位偏移10度。

        该变频器的特点如下:

        ① 采用多重化PWM方式控制,输出电压波形接近正弦波。

        ② 整流电路的多重化,脉冲数多达36,功率因数高,输入谐波小。

        ③ 模块化设计,结构紧凑,维护方便,增强了产品的互换性。

        ④ 直接高压输出,无需输出变压器。

        ⑤ 极低的dv/dt输出,无需任何形式的滤波器。

        ⑥ 采用光纤通讯技术,提高了产品的抗干扰能力和可靠性。

        ⑦ 功率单元自动旁通电路,能够实现故障不停机功能。

        随 着现代电力电子技术及计算机控制技术的迅速发展,促进了电气传动的技术革命。交流调速取代直流调速,计算机数字控制取代模拟控制已成为发展趋势。交流电机 变频调速是当今节约电能,改善生产工艺流程,提高产品质量,以及改善运行环境的一种主要手段。变频调速以其高效率,高功率因数,以及优异的调速和启制动性 能等诸多优点而被国内外公认为最有发展前途的调速方式。

        以前的高压变频器,由可控硅整流,可控硅逆变等器件构成,缺点很多,谐波大, 对电网和电机都有影响。近年来,发展起来的一些新型器件将改变这一现状,如IGBT、IGCT、SGCT等等。由它们构成的高压变频器,性能优异,可以实 现PWM逆变,甚至是PWM整流。不仅具有谐波小,功率因数也有很大程度的提高。

       编辑本段变频器的分类

       单元串联型变频器

        这是近几年才发展起来的一种电路拓扑结构,它主要由输入变压器、功率单元和控制单元三大部分组成。采用模块化设计,由于采用功率单元相互串联的办法解决了高压的难题而得名,可直接驱动交流电动机,无需输出变压器,更不需要任何形式的滤波器。

        整套变频器共有18个功率单元,每相由6台功率单元相串联,并组成Y形连接,直接驱动电机。每台功率单元电路、结构完全相同,可以互换,也可以互为备用。

        变频器的输入部分是一台移相变压器,原边Y形连接,副边采用沿边三角形连接,共18副三相绕组,分别为每台功率单元供电。它们被平均分成Ⅰ、Ⅱ、Ⅲ三大部分,每部分具有6副三相小绕组,之间均匀相位偏移10度。

        该变频器的特点如下:

        ① 采用多重化PWM方式控制,输出电压波形接近正弦波。

        ② 整流电路的多重化,脉冲数多达36,功率因数高,输入谐波小。

        ③ 模块化设计,结构紧凑,维护方便,增强了产品的互换性。

        ④ 直接高压输出,无需输出变压器。

        ⑤ 极低的dv/dt输出,无需任何形式的滤波器。

        ⑥ 采用光纤通讯技术,提高了产品的抗干扰能力和可靠性。

        ⑦ 功率单元自动旁通电路,能够实现故障不停机功能。

        随 着现代电力电子技术及计算机控制技术的迅速发展,促进了电气传动的技术革命。交流调速取代直流调速,计算机数字控制取代模拟控制已成为发展趋势。交流电机 变频调速是当今节约电能,改善生产工艺流程,提高产品质量,以及改善运行环境的一种主要手段。变频调速以其高效率,高功率因数,以及优异的调速和启制动性 能等诸多优点而被国内外公认为最有发展前途的调速方式。

        以前的高压变频器,由可控硅整流,可控硅逆变等器件构成,缺点很多,谐波大, 对电网和电机都有影响。近年来,发展起来的一些新型器件将改变这一现状,如IGBT、IGCT、SGCT等等。由它们构成的高压变频器,性能优异,可以实 现PWM逆变,甚至是PWM整流。不仅具有谐波小,功率因数也有很大程度的提高。

       按变换的环节分类

        (1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。

        (2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器;

       按直流电源性质分类

        (1)电压型变频器

        电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。

        (2)电流型变频器

        电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。

       按主电路工作方法

        电压型变频器、电流型变频器

       按照工作原理分类

        可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;

       按照开关方式分类

        可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;

       按照用途分类

        可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。

       按工作原理分

        U/f控制变频器(VVVF控制)、SF控制变频器(转差频率控制)、VC控制变频器(Vectory Control 矢量控制)

MOS管和IGBT有什么区别?别傻傻分不清了

       了解MOS管与IGBT的差异有助于在电子电路设计中做出合适的选择。MOS管,全称为金属-氧化物半导体场效应晶体管,因其栅极与半导体层之间有一层绝缘体而得名。MOS管分为N沟耗尽型和增强型,P沟耗尽型和增强型四大类。部分MOS管内部可能包含体二极管,其作用在于保护MOS管免受过电压损害或防止源极与漏极反接时的电流冲击,以确保电路安全稳定运行。MOS管特性包括输入阻抗高、开关速度快、热稳定性好、电压控制电流等,适用于放大器、电子开关等电路应用。

       IGBT,绝缘栅双极型晶体管,是一种由晶体三极管和MOS管结合的复合型半导体器件。IGBT具有输入阻抗高、电压控制功耗低、控制电路简单、耐高压、承受电流大的特点,广泛应用于交流电机、变频器、开关电源、照明电路、牵引传动等领域。IGBT内部设置的体二极管并非寄生的,而是为了保护IGBT免受反向电压损害而专门设计的。判断IGBT内部是否包含体二极管的方法是使用万用表测量IGBT的C极和E极电阻值,若无穷大则表示没有体二极管。

       MOS管与IGBT的结构特点有明显差异,MOS管通过在漏极上追加层构成IGBT,其理想等效电路是MOSFET和晶体管三极管的结合,IGBT在高压下仍能保持较低的导通电阻。然而,IGBT在低频及较大功率场合下表现更佳,其导通电阻小、耐压高。MOS管则在高频特性上具有优势,适用于开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域。而IGBT则集中应用于焊机、逆变器、变频器、电镀电解电源、超音频感应加热等领域。

       在选择MOS管还是IGBT时,应考虑电路的电压、电流、切换功率等因素。MOS管适用于高频场合,但导通电阻较大,可能导致功耗增加。IGBT则在低频及大功率应用中表现出色,其导通电阻小、耐压高。MOSFET适用于开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域,而IGBT则集中应用于焊机、逆变器、变频器、电镀电解电源、超音频感应加热等领域。

MOS和IGBT辨别与区分

       在电子电路设计中,MOS管与IGBT管作为开关元件的应用无处不在。两者在外形与特性参数上颇为相似,但它们在具体应用场景上有所不同。理解它们的特性,有助于更精准地选择适合的器件,以满足不同电路需求。

       MOS管,即金属-氧化物半导体场效应晶体管,是一种场效应管,其栅极被绝缘层隔离。它根据内部结构可分为N沟耗尽型、增强型、P沟耗尽型、增强型等。MOS管内常包含体二极管,即寄生二极管,其主要功能是防止过压导致的MOS管损坏,并在源极和漏极反接时保护MOS管免受损伤。此外,MOS管具有输入阻抗高、开关速度快、热稳定性好、电压控制电流等优点,适用于放大器、电子开关等电路。

       IGBT,绝缘栅双极型晶体管,是一种复合型半导体器件,由晶体三极管和MOS管组成。IGBT具有输入阻抗高、电压控制功耗低、控制电路简单、耐高压、承受电流大等特性,广泛应用于各种电子电路。IGBT内部也包含体二极管,但并非寄生的,而是为了保护IGBT免受反向耐压冲击而专门设置的。通过测量IGBT的C极和E极,若测得无穷大电阻值,即可判断IGBT无体二极管。IGBT在交流电机、变频器、开关电源、照明电路、牵引传动等领域的应用尤为突出。

       MOS管与IGBT在结构上的区别在于,IGBT是在MOSFET的漏极上追加一层构成。IGBT的理想等效电路结合了MOSFET和晶体管三极管的特点,相较于MOSFET,IGBT在高压下具有更低的导通电阻,但在相同功率容量时,可能在速度上慢于MOSFET。因此,IGBT与MOSFET在选择上应综合考虑电压、电流、切换功率等因素。MOSFET在高频电源领域表现出色,适用于开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等场合;而IGBT在低频及较大功率应用中更为突出,广泛应用于焊机、逆变器、变频器、电镀电解电源、超音频感应加热等领域。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言