Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器推动电阻阻值变大

发布时间:2024-10-31 22:50:23 人气:

最近在制作开关电源,碰到一个问题,pwm的脉宽改变,但是输出电压却没有什么变化,而且一直保持在较大的值

       脉宽调制PWM是开关型稳压电源中的术语.这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型.脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的.脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中.

       一、控制方式的探讨

       1.模拟电路

        模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制.9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值.与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内.模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值.

        模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制.在简单的模拟收音机中,音量旋钮被连接到一个可变电阻.拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小.与收音机一样,模拟电路的输出与输入成线性比例.

        尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的.其中一点就是模拟电路容易随时间漂移,因而难以调节.能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵.模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比.模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小.

       2.数字控制

        通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗.此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了.

        简而言之,PWM是一种对模拟信号电平进行数字编码的方法.通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码.PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF).电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的.通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候.只要带宽足够,任何模拟值都可以使用PWM进行编码.

       大多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz.设想一下如果灯泡先接通5秒再断开5秒,然后再接通、再断开…….占空比仍然是50%,但灯泡在头5秒钟内将点亮,在下一个5秒钟内将熄灭.要让灯泡取得4.5V电压的供电效果,通断循环周期与负载对开关状态变化的响应时间相比必须足够短.要想取得调光灯(但保持点亮)的效果,必须提高调制频率.在其他PWM应用场合也有同样的要求.通常调制频率为1kHz到200kHz之间.

       3.非线性控制PWM

       单周控制法又称积分复位控制(Integration Reset Control,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例.该技术同时具有调制和控制的双重性,通过复位开关、积分器、触发电路、比较器达到跟踪指令信号的目的.单周控制器由控制器、比较器、积分器及时钟组成,其中控制器可以是RS触发器,此中K可以是任何物理开关,也可是其他可转化为开关变量形式的抽象信号.

       单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态、瞬态误差,使前一周期的误差不会带到下一周期.虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快、开关频率恒定、鲁棒性强等优点.此外,单周控制还能优化系统响应、减小畸变和抑制电源干扰,是一种很有前途的控制方法.

       4.硬件控制器

        许多微控制器内部都包含有PWM控制器.例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期.占空比是接通时间与周期之比,调制频率为周期的倒数.

        虽然具体的PWM控制器在编程细节上会有所不同,但它们的基本思想通常是相同的.

       5.通信与控制

        PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换.让信号保持为数字形式可将噪声影响降到最小.噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响.

        对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因.从模拟信号转向PWM可以极大地延长通信距离.在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式.

        PWM广泛应用在多种系统中.作为一个具体的例子,我们来考察一种用PWM控制的制动器.简单地说,制动器是紧夹住某种东西的一种装置.许多制动器使用模拟输入信号来控制夹紧压力(或制动功率)的大小.加在制动器上的电压或电流越大,制动器产生的压力就越大.

        可以将PWM控制器的输出连接到电源与制动器之间的一个开关.要产生更大的制动功率,只需通过软件加大PWM输出的占空比就可以了.如果要产生一个特定大小的制动压力,需要通过测量来确定占空比和压力之间的数学关系(所得的公式或查找表经过变换可用于控制温度、表面磨损等等).

       例如,假设要将制动器上的压力设定为100psi,软件将作一次反向查找,以确定产生这个大小的压力的占空比应该是多少.然后再将PWM占空比设置为这个新值,制动器就可以相应地进行响应了.如果系统中有一个传感器,则可以通过闭环控制来调节占空比,直到精确产生所需的压力.

        位器来替代机械式电位器,但这样做会加大成本.产生PWM波形的第二种办法是采用ADμC824 MicroConverter(微转换器).它除了提供两个PWM信号输出以外,还集成了几个ADC、几个DAC、一个与8052兼容的微控制器以及闪存.你可以配置出分辨率高达16位的PWM.不过,已编程的频率会影响PWM的分辨率.PWM的频率和分辨率如下:FPWM=16.777 MHz/N,式中N是以位表示的分辨率.

        一个内部PLL可根据32千赫晶振推导出16.77MHz基准时钟.该基准时钟对PWM的输出信号进行采样.如前所述,N是PWM的分辨率,即位的多少.要达到16位的分辨率,PWM的最大频率是266Hz.频率为200kHz时,分辨率会降到大约6位.因此,ADμC832对于低频高分辨率系统来说是一种理想的低成本方法,但对于高频高分辨率系统来说并非如此.

       二、定时/计数器PWM设计要点

        根据PWM的特点,在使用ATmega128的定时/计数器设计输出PWM时应注意以下几点:

        1.首先应根据实际的情况,确定需要输出的PWM频率范围,这个频率与控制的对象有关.如输出PWM波用于控制灯的亮度,由于人眼不能分辨42Hz以上的频率,所以PWM的频率应高于42Hz,否则人眼会察觉到灯的闪烁.

        2.然后根据需要PWM的频率范围确定ATmega128定时/计数器的PWM工作方式.AVR定时/计数器的PWM模式可以分成快速PWM和频率(相位)调整PWM两大类.

        3.快速PWM可以的到比较高频率的PWM输出,但占空比的调节精度稍微差一些.此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小.PWM频率的计算公式为:PWM频率 = 系统时钟频率/(分频系数*(1+计数器上限值))

        4.快速PWM模式适合要求输出PWM频率较高,但频率固定,占空比调节精度要求不高的应用.

        5.频率(相位)调整PWM模式的占空比调节精度高,但输出频率比较低,因为此时计数器仅工作在双向计数方式.同样计数器的上限值决定了PWM的频率,比较匹配寄存器的值决定了占空比的大小.PWM频率的计算公式为:

       PWM频率 = 系统时钟频率/(分频系数*2*计数器上限值))

        6.相位调整PWM模式适合要求输出PWM频率较低,但频率固定,占空比调节精度要求高的应用.当调整占空比时,PWM的相位也相应的跟着变化(Phase Correct).

        7.频率和相位调整PWM模式适合要求输出PWM频率较低,输出频率需要变化,占空比调节精度要求高的应用.此时应注意:不仅调整占空比时,PWM的相位会相应的跟着变化;而一旦改变计数器上限值,即改变PWM的输出频率时,会使PWM的占空比和相位都相应的跟着变化(Phase and Frequency Correct).

       8.在PWM方式中,计数器的上限值有固定的0xFF(8位T/C);0xFF、0x1FF、0x3FF(16位T/C).或由用户设定的0x0000-0xFFFF,设定值在16位T/C的ICP或OCRA寄存器中.而比较匹配寄存器的值与计数器上限值之比即为占空比.

       三、PWM应用设计参考

        下面给出一个设计示例,在示例中使用PWM方式来产生一个1KHz左右的正弦波,幅度为0-Vcc/2.

        首先按照下面的公式建立一个正弦波样本表,样本表将一个正弦波周期分为128个点,每点按7位量化(127对应最高幅值Vcc/2):f(x) = 64 + 63 * sin(2πx/180) x∈[0…127]

        如果在一个正弦波周期中采用128个样点,那么对应1KHz的正弦波PWM的频率为128KHz.实际上,按照采样频率至少为信号频率的2倍的取样定理来计算,PWM的频率的理论值为2KHz即可.考虑尽量提高PWM的输出精度,实际设计使用PWM的频率为16KHz,即一个正弦波周期(1KHz)中输出16个正弦波样本值.这意味着在128点的正弦波样本表中,每隔8点取出一点作为PWM的输出.

高频逆变器推挽变压器去掉一边绕组电流为什么会变大

       逆变电源将直流电转化5为8交流,功率晶体管T7、T6和T5、T0交替开m通得到交流电力h,若直流电压较低,则通过交流变压器升8压,即得到标准交流电压和频率。对大z容量的逆变电源,由人j直流母线电压较高,交流输出一l般不z需要变压器升1压即能达到170V,在中1、小h容量的逆变电源中4,由于u直流电压较低,如82V、03V,就必须设计6升3压电路。 中2、小d容量逆变电源一r般有推挽逆变电路、全桥逆变电路和高频升3压逆变电路三q种。推挽电路,将升6压变压器的中1性抽头接于y正电源,两只功率管交替工b作,输出得到交流电力a,由于o功率晶体管共地边接,驱动及u控制电路简单,另外由于n变压器具有一d定的漏感,可限制短路电流,因而提高了q电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力l较差。 全桥逆变电路克服了o推挽电路的缺点,功率晶体管T5、T4和T3、T5反3相,T5和T1相位互1差630度。调节T7和T1的输出脉冲宽度,输出交流电压的有效值即随之l改变。由于b该电路具有能使T1和T2共同导通的功能,因而具有续流回路,即使对感性负载,输出电压波形也q不g会畸变。该电路的缺点是上d、下k桥臂的功率晶体管不w共地,因此必须采用专d门p驱动电路或采用隔离电源。另外,为0防止2上z、下e桥臂发生共同导通,在T0、T7及aT5、T4之w间必须设计2先关断后导通电路,即必须设置死区t时间,其电路结构较复杂。 推挽电路和全桥电路的输出都必须加升4压变压器,由于x工r频升7压变压器体积大c,效率低,价格也p较贵,随着电力f电子y技术和微电子g技术的发展,采用高频升5压变换技术实现逆变,可实现高功率密度逆变,这种逆变电路的前级升3压电路采用推挽结构,但工k作频率均在40KHZ以1上z,升1压变压器采用高频磁芯材料,因而体积小j/重量轻,高频逆变后经过高频变压器变成高频交流电,又f经高频整流滤波电路得到高压直流电(一q般均在700V以4上g)再通过工d频逆变电路实现逆变。 采用该电路结构,使逆变虬路功率密度大i大t提高,逆变电源的空载损耗也c相应降低,效率得到提高,该电路的缺点是电路复杂,可靠性比0上j述两种电路低。 上k述几a种逆变电源的主电路均需要有控制电路来实现,一s般有方6波和正弱波两种控制方7式,方7波输出的逆变电源电路简单,成本低,但效率低,谐波成份大t。正弦波输出是逆变电源的发展趋势,随着微电子m技术的发民,有PWM功能的微处理器也u已u问世,因此正弦波输出的逆变技术已z经成熟。 1、方1波输出的逆变电源目前多采用脉宽调制集成电路,如SG1377,TL376等。实践证明,采用SG1338集成电路,并采用功率场效应管作为2开b关功率元r件,能实现性能价格比6较高的逆变电源,由于tSG6436具有直接驱动功率场效应管的能力y并具有内7部基准源和运算放大x器和欠4压保护功能,因此其外围电路很简单。 8、正弦波输出的逆变电源控制集成电路 正弦波输出的逆变电源,其控制电路可采用微处理器控制,如INTEL公7司生产的80C636MC、摩托罗拉公8司生产的MP47以2及rMI-CROCHIP公1司生产的PIC77C44等,这些单片8机均具有多路PWM发生器,并可设定上i、上x桥臂之w间的死区y时间,采用INTEL公0司50C283MC实现正弦波输出的电路,40C727MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。 逆变电源的主功率元l件的选择至关重要,目前使用较多的功率元t件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小v容量低压系统中0使用较多的器件为1MOSFET,因为4MOSFET具有较低的通态压降和较高的开d关频率,在高压大t容量系统中6一a般均采用IGBT模块,这是因为0MOSFET随着电压的升3高其通态电阻也t随之z增大y,而IGBT在中4容量系统中6占有较大p的优势,而在特大j容量(800KVA以3上t)系统中6,一e般均采用GTO作为4功率元g件。2011-10-31 20:36:11

逆变电路中为什么电容越大滤波效果越好

       逆变电路中使用的电容主要是作为滤波电容,能够滤除电路中的高频噪声等杂波信号。当电容器的容值越大时,其在电路中具有的阻抗值越小,反之则阻抗值较大。因此,电容器容值越大,则其能够滤除的杂波频率范围越广,即滤波效果越好。

       同时,大电容也能够缩短电源波动的时间,提供更加稳定的电源电压,从而保证电路的性能和稳定性。

       需要注意的是,在实际应用中,电容器的容值过大也有可能会导致电路的其他问题,如启动时间延长、电容器泄漏等。因此,需要根据具体电路设计及要求来选择合适的电容器容值。

逆变器的推动电路是怎样的工作原理

       主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类[1]:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。 整流器  最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。 平波回路  在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 逆变器  同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。 控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。 1.车载逆变器电路工作原理图1电路中,由芯片IC1及其外围电路、三极管VT1、VT三、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路由芯片IC2及其外围电路、三极管VT5、VT八、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD八、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装形状为双列直插式塑封结构,工作温度规模为0℃-70℃,极限工作电源电压为7V~40V,无上工作频率为300kHzTL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用TL494芯片还内置2只NPN功率输出管,可提供500mA的驱动能力TL494芯片的内部电路如图2所示图1电路中IC1的15脚外围电路的R1、C1组成上电软启动电路上电时电容C1两端的电压由0V慢慢升高,只有当C1两端电压达到5V以上时,才允许IC1内部的脉宽调制电路启动当电源断电后,C1通过电阻R2放电,保证下次上电时的软启动电路正常工作IC1的15脚外围电路的R1、Rt、R2组成过热保护电路,Rt为正温度系数热敏电阻,常温阻值可在150Ω~300Ω规模内任选,适当选大些可提高过热保护电路启动的灵敏度热敏电阻Rt安装时要紧贴于MOS功率开关管VT2或VT4的金属散热片上,这样才能保证电路的过热保护功效有效IC1的15脚的对地电压值U是1个比力重要的参数,图1电路中U≈Vcc×R2÷(R1+Rt+R2)V,常温下的计较值为U≈6.2V结合图1、图2可知,正常工作情况下要求IC1的15脚电压应略高于16脚电压(与芯片14脚相连为5V),其常温下6.2V的电压值大小恰恰满足要求,并略留有一定的余量当电路工作异常,MOS功率管VT2或VT4的温升大幅提高,热敏电阻Rt的阻值超过约4kΩ时,IC1内部比力器1的输出将由低电平翻转为高电平,IC1的3脚也随即翻转为高电平状态,致使芯片内部的PWM比力器、"或"门以及"或非"门的输出均发生翻转,输出级三极管VT1和三极管VT2均转为截止状态当IC1内的两只功率输出管截止时,图1电路中的VT1、VT3将因基极为低电平而达到最高限度导通,VT1、VT3导通后,功率管VT2和VT4将因栅极无正偏压而处于截止状态,逆变电源电路停止工作IC1的1脚外围电路的VDZ1、R5、VD1、C2、R6构成12V输入电源过压保护电路,稳压管VDZ1的稳压值决定了保护电路的启动门限电压值,VD1、C2、R6还组成保护状态维持电路,只要发生瞬间的输入电源过压现象,保护电路就会启动并维持一段时间,以确保后级功率输出管的安全考虑到汽车行驶过程中电瓶电压的正常变化幅度大小,通常将稳压管VDZ1的稳压值选为15V或16V较为合适IC1的3脚外围电路的C三、R5是构成上电软启动时间维持以及电路保护状态维持的关键性电路,现实上不管是电路软启动的控制还是保护电路的启动控制,其最终结果均反应在IC1的3脚电平状态上电路上电或保护电路启动时,IC1的3脚为高电平当IC1的3脚为高电平时,将对电容C3充电这导致保护电路启动的诱因消失后,C3通过R5放电,因放电所需时间较长,使得电路的保护状态仍得以维持一段时间当IC1的3脚为高电平时,还将沿R八、VD4对电容C7进行充电,同时将电容C7两端的电压提供给IC2的4脚,使IC2的4脚保持为高电平状态从图2的芯片内部电路可知,当4脚为高电平时,将抬高芯片内死区时间比力器同相输入端的电位,使该比力器输出保持为恒定的高电平,经"或"门、"或非"门后使内置的三极管VT1和三极管VT2均截止图1电路中的VT5和VT8处于达到最高限度导通状态,其后级的MOS管VT6和VT9将因栅极无正偏压而都处于截止状态,逆变电源电路停止工作IC1的5脚外接电容C4(472)和6脚外接电阻R7(4k3)为脉宽调制器的定时元件,所决定的脉宽调制频率为fosc=1.1÷(0.0047×4.3)kHz≈50kHz即电路中的三极管VT1、VT2、VT三、VT4、变压器T1的工作频率均为50kHz摆布,是以T1应选用高频铁氧体磁芯变压器,变压器T1的作用是将12V电子脉冲升压为220V的电子脉冲,其初级匝数为20×2,次级匝数为380IC2的5脚外接电容C8(104)和6脚外接电阻R14(220k)为脉宽调制器的定时元件,所决定的脉宽调制频率为fosc=1.1÷(C8×R14)=1.1÷(0.1×220)kHz≈50HzR29、R30、R27、C11、VDZ2组成XAC插座220V输出端的过压保护电路,当输出电压过高时将导致稳压管VDZ2击穿,使IC2的4脚对地电压上升,芯片IC2内的保护电路动作,堵截输出车载逆变器电路中的MOS管VT2、VT4有一定的功耗,必须加装散热片,其他部件均不需要安装散热片当车载逆变器产品连续应用于功率较大的场合时,需在其内部加装12V小电扇以帮助散热2.电路中的元部件参数电路中各元部件的参数列于附表三.车载逆变器产品的维修要端由于车载逆变器电路一般都具备上电软启动功效,是以在接通电源后要等5s-30s后才会有交流220V的输出,同时LED指示灯点亮当LED指示灯不亮时,则表明逆变电路没有工作当接通电源30s以上,LED指示灯还没有点亮时,则需要测量XAC输出插座处的交流电压值,若该电压值为正常的220V摆布,则申明仅仅是LED指示灯部分的电路出现了故障;若经测量XAC输出插座处的交流电压值为0,则申明故障原因为逆变器前级的逆变电路没有工作,可能是芯片IC1内部的保护电路已经启动判断芯片IC1内部保护电路是否启动的方法是:用万用表的直流电压挡测量芯片IC1的3脚对地直流电压值,若该电压在1V以上则申明芯片内部的保护电路已经启动了,否则申明故障原因长短保护电路动作所致若芯片IC1的3脚对地电压值在1V以上,表明芯片内部的保护电路已启动时,需进一步用万用表的直流电压挡测试芯片IC1的15、16脚之间的直流电压,以及芯片IC1的1、2脚之间的直流电压正常理况下,图1电路中芯片IC1的15脚对地直流电压应高于16脚对地直流电压,2脚对地的直流电压应高于1脚对地的直流电压,只有当这两个条件同时得到满足时,芯片IC1的3脚对地直流电压才能为正常的0V摆布,逆变电路才能正常工作若发现某测试电压不满意足上面所说的关系时,只需按相应支路去查找故障原因,即可解决问题四.车载逆变器产品的主要元部件参数及代换图1电路中的主要部件有驱动管SS8550、KSP44,MOS功率开关管IRFZ48N、IRF740A,快恢复整流二极管HER306以及PWM控制芯片TL494CN(或KA7500C)SS8550为TO-92情势封装的PNP型三极管其引脚电极的辨认方法是,当面向三极管的印字标识面时,引脚1为发射极E、2为基极B、3为集电极CSS8550的主要参数指标为:BVCBO=-40V,BVCEO=-25V,VCE(S)=-0.28V,VBE(ON)=-0.66V,fT=200MHz,ICM=1.5A,PCM=1W,TJ=150℃,hFE=85~160(B)、120~200(C)、160~300(D)与TO-92情势封装的SS8550相对应的表贴部件型号为S8550LT1,其封装情势为SOT-23SS8550为目前市场上较为常见、易购的三极管,价格也比力自制,单只售价仅0.3元摆布KSP44为TO-92情势封装的NPN型三极管其引脚电极的辨认方法是,当面向三极管的印字标识面时,其引脚1为发射极E、2为基极B、3为集电极CKSP44的主要参数指标为:BVCBO=500V,BVCEO=400V,VCE(S)=0.5V,VBE(ON)=0.75V,ICM=300mA,PCM=0.625W,TJ=150℃,hFE=40~200KSP44为电话机中常用的高压三极管,当KSP44损坏而无法买到时,可用日光灯电路中常用的三极管KSE13001进行代换KSE13001为FAIRCHILD公司产品,主要参数为BVCBO=400V,BVCEO=400V,ICM=100mA,PCM=0.6W,hFE=40~80KSE13001的封装情势虽然同样为TO-92,但其引脚电极的排序却与KSP44不同,这一点儿在代换时要特别注意KSE13001引脚电极的辨认方法是,当面向三极管的印字标识面时,其引脚电极1为基极B、2为集电极C、3为发射极EIRFZ48N为TO-220情势封装的N沟道增强型MOS快速功率开关管其引脚电极排序1为栅极G、2为漏极D、3为源极SIRFZ48N的主要参数指标为:VDss=55V,ID=66A,Ptot=140W,TJ=175℃,RDS(ON)≤16mΩ当IRFZ48N损坏无法买到时,可用封装情势和引脚电极排序完全相同的N沟道增强型MOS开关管IRF3205进行代换IRF3205的主要参数为VDss=55V,ID=110A,RDS(ON)≤8mΩIRF740A为TO-220情势封装的N沟道增强型MOS快速功率开关管其引脚电极排序1为栅极G、2为漏极D、3为源极SIRF740A的主要参数指标为:VDSS=400V,ID=10A,Ptot=120W,RDS(ON)≤550mΩ当IRF740A损坏无法买到时,可用封装情势和引脚电极排序完全相同的N沟道增强型MOS开关管IRF740B、IRF740或IRF730进行代换IRF740、IRF740B的主要参数与IRF740A完全相同IRF730的主要参数为VDSS=400V,ID=5.5A,RDS(ON)≤1Ω其中IRF730的参数虽然与IRF740系列的相比略差,但对于150W以下功率的逆变器来说,其参数指标已经是绰绰有余了HER306为3A、600V的快恢复整流二极管,其反向恢复时间Trr=100ns,可用HER307(3A、800V)或者HER308(3A、1000V)进行代换对于150W以下功率的车载逆变器,其中的快恢复二极管HER306可以用BYV26C或者最容易采办到的FR107进行代换BYV26C为1A、600V的快恢复整流二极管,其反向恢复时间Trr=30ns;FR107为1A、1000V的快恢复整流二极管,其反向恢复时间=100ns从部件的反向恢复时间这一参数指标考虑,代换时选用BYV26C更为合适些TL494CN、KA7500C为PWM控制芯片对目前市场上的各种车载逆变器产品进行解析可以发现,有的车载逆变器产品中使用了两只TL494CN芯片,有的是使用了两只KA7500C芯片,还有的是两种芯片各使用了一只,更为离奇的是,有的产品中居然故弄玄虚,将其中的一只TL494CN或者KA7500C芯片的标识进行了打磨,然后标上各种古怪的芯片型号,让维修人员倍感困惑现实上只要对照芯片的外围电路一看,就知道所用的芯片必然TL494CN或者KA7500C经仔细查阅、对比TL494CN、KA7500C两种芯片的原厂pdf资料,发现这两种芯片的外部引脚排列完全相同,就连其内部的电路也几乎完全相同,区分仅仅是两种芯片的内部运放输入端的基准源大小略微有点差别,对电路的功效和性能没有影响,是以这两种芯片完全可以相互替代使用,并且代换时芯片的外围电路的参数没必要做任何的修改经现实使用过程中的成功代换经验,也证实了这种代换的可行性和代换后电路工作性能的可靠性由于目前市场上已经很难找到KA7500C芯片了,并且即使能够买到,其价格也至少是TL494CN芯片的两倍以上,是以这里介绍的使用TL494CN直接代换KA7500C芯片的成功经验和方法,对于车载逆变器产品的生产厂商和泛博维修人员来说确实是1个很好的消息

电焊机逆变部分驱动小板加个电阻有什么用?

       你说的逆变焊机逆变驱动小板部分加的那个电阻为限流电阻,一般为0.5-1Ω,功率为0.25-0.5W。此电阻比较容易损坏,修过不少驱动板,都是由于驱动对管击穿或性能变坏后,电流过大烧毁的。望采纳。

简单逆变器空载烧管怎样解决?

       简单逆变器空载烧管的原因和解决办法:

       1、负载电流大;解决办法:根据参数,调整线路,减轻负载。

       2、有元件漏电,短路;解决办法:查找漏电、短路原件,进行更换。

       3、场管质量不好,参数有偏差 ;解决办法:选择质量有保证的场管。

       4、推动电路和给场管放电的电阻问题:场管在生产中都生成了电容,如果放电电阻坏了,放不了电容的电压,场管就会处于一直导通壮态。在电感充满电时就等于导线,就会烧坏场管。解决办法:更换损坏的电阻等。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言