湖北仙童科技有限公司
全国咨询热线:0722-7600323

逆变器是什么行业分类

发布时间:2024-10-27 14:40:18 人气:

逆变器好吗?

       一、看产品外型

       产品外型包括,输入端子,接地端子,散热风扇位置,输出插座位置和方向,旁路输入接线方式,远程开关,显示表头等。

       主要根据你安装的位置,应用要求来选,比如输入端子接线方式是否方便,是否牢固,接线柱电流电否够,如果应用于移动设备要考虑固定方式,如果安装环境的特殊性,要考虑逆变器散热风扇的风流方向必须顺流。输出插座也有讲究,如果是三孔插座,你会发现90度的插头在单孔在上时不好用。旁路接线一般我们建议用锁端子形式,主要是防止震动或异动时插头会接触不良造成打火损坏逆变器或设备等不必要的风险,如果是一个比较稳定的环境,如机房等可以考虑用插头比较方便适用。远程开关适用于逆变器安装在箱体内,但平时要开关逆变器时应用。至于表头有必要时才需要。

       以下图广东泰琪丰逆变器为例:

       逆变器指示图

二、看电气规格书

       这一点很重要,电气规格表描述的一般都很全面了,输出功率,瞬间功率,输入电压范围,效率,波形失真度,输出电压稳定度,对应你的项目要求,规格书列明的是不是你正需要的。每家提供的规格书还是有区别的。如下图所示功能,输出频率可调,输出电压可调,就很好的方便了用户,适应不同的负载自己进行设定。

       逆变器指示图

       每家设计逆变器的电路都不太相同,重要的是能否带动感性负载,混合性负载等,带载能力有多强,保护功能是否齐全,也是你要考虑的。只有测试做对比你就不难发现差异在哪里,根据你项目的来选择工作和储存温度范围,现在一般标0~40度的环境温度, 以广东泰琪丰逆变器的规格来看基本可以在 -20~50度,实测可以-30~55度,在行业里算是比较领先的水平。

三、看内部器件布局和使用元器件

       但最起码有一点,里面的元器件是否整齐,有没有相关的跳线乱接,同一个规格的器件有没有使用不同颜色或不同厂家的品牌,元器件有没有破损等,内部工艺的好坏对产品品质影响还是很大的。有基础的朋友可以看他的元器件的生产商是否为有资质的企业,电路板布局是否符合安规要求等。

与电流平方成正比的损耗——焦耳热损耗

       首先介绍电机控制器。如果存在电阻,则会产生焦耳热(I2 Rt)。损耗与电流(I)的平方成正比,与电阻(R)和时间(t)也成正比。电流流过的所有部分都会产生焦耳热,在意想不到的地方产生焦耳热。考虑焦耳热对策,首先要了解防止焦耳热产生 的技术。

四、逆变器及其内部

       虽有各种类型的控制器,但无刷直流电机 + 逆变器组合的效率更高(低损耗)。无刷直流电机自身并不利用直流,而是利用三相 交流进行驱动。变换器从直流电源处生成三相交流电,并随时调整电压,输入电机(图 1)。

       图1

五、逆变器的功能

       逆变器内部装有微控制器,会生成高速信号(交 流信号)。根据微控制器输出的开关信号,高速且正 确地开关电池(直流电源)。

六、三相线圈电机与六开关逆变器

       无刷直流电机存在三相(U 相 /V 相 /W 相)绕组, 使用 120°方波通电时,电流通常从一相绕组流向另一 相绕组,而剩下的一相并不流通电流。为了使电流保 持流通,笔者准备了 6 个开关(图 2)。

       图2

       选取 3 个开关与正极侧相连。同样,与负极侧也 有 3 个开关,共计 6 个。高压侧和低压侧各自仅能选择一相,且两者不能 选取同一相。由固定模式高速切换开关。

七、微控制器和传感器发出时序指令

       如果以图 3 所示的模式切换三相开关,则电机旋转。

       图3

       微控制器根据时序控制切换模式。随意切换开关模式会导致电机的随机旋转。旋转时需准确找到转子磁体位置并计算切换时序。电机定子侧载有检测转子磁体接近的传感器。微控制 器检测传感器的状态,并决定开关时序。虽然微控制器向 6 个开关输出指令,但发挥开关功能的却是 MOSFET。

八、开关器件

       MOSFET 逆变器通常会使用 6 个 MOSEFT。MOSEFT 为晶 体管的一种,有 3 个引脚。其中,向栅极施加电压(ON) 时,电流从与电池正极侧相连的漏极流向负极侧的源 极。栅极发挥开关作用。

       图4

       漏极连接正极侧,源极连接负极侧电路。正负极 对调时,电流会从寄生二极管中流过。电机电路中存在大型电感(线圈)。因此,开通 时储存电能,关断时电流反向流过 MOSEFT 的寄生二 极管。电流流过二极管时,会产生电压降,从而形成巨 大损耗。

九、利用 PWM 占空比控制电压

       提高电机转速时,通常需提高电压,需安装可改 变三相交流电源电压的装置。多数逆变器利用 PWM(Pulse Width Modulation,脉冲宽度调制)来控制电压。为此,控制电机旋转的 开关需要持续高速切换。观察图 7 可知,在开通时间 内以载波频率进行高速开关。这称为斩波。开通时间所占比例为占空比,决定电机的平均电压(图 5)。

       图5

       100% 开通意味着占空比达到 100%。此 时电机电压为 12V,为一块铅酸蓄电池的电源电压。50% 占空比表示 12V 时间与 0V 时间各占一半。此时,电机驱动的平均电压为 6V。30% 占空比时为 3.6V。PWM 控制是逆变器控制的基本方法,可控制电机 的驱动电压(转速)。例如,要提高电机转速,就要 提高电机电压,也就是增大占空比。车辆的加速控制采用 PWM。

十、电机和逆变器的损耗

       何时引起 MOSFET 损耗?

       这 是 有 关 损 耗 的 课 题。笔 者 先 考 虑 开 关 器 件 MOSFET 的情况(图 7)。

       图6

       (1)开通损耗——通态电阻 MOSFET 开通时,大电流在源极与漏极间流通, MOSFET 通态电阻会产生开通损耗。通态电阻随 MOSFET 型号的不同而不同。MOSFET 的通态电阻小于普通晶体管,但笔者选用更小通态电 阻的 MOSFET。开关速度高(频率特性优良)的 MOSFET 的通态 电阻有增大的倾向。

       (2)开关损耗 观察图 6 可知,MOSFET 进行高速开关时,开关 切换时间不为零。在过渡期存在电阻,会产生较大发 热(损耗),这被称为开关损耗。频率特性越好的 MOSFET,开关损耗越小。

       (3)寄生二极管损耗 仅单臂斩波时似乎并没有什么影响,真实并非 如此。单臂的 PWM 斩波也会产生损耗。观察图 2可知,在 MOSFET 关断期间,电机线圈中储存的电能 通过 MOSFET 的寄生二极管放电,电流从源极流向 漏极。该反向电流流经寄生二极管内部电阻时产生焦耳 热损耗。

十一、寄生二极管的重要功能

       上述对寄生二极管的说明,可能会给人留下不好 的印象。但寄生二极管发挥着非常重要的作用。MOSFET 没有寄生二极管会非常麻烦。在 MOSFET 关断期间,电机线圈需要寄生二极管续流,防止同步 整流死区时间的浪涌电流破坏器件。

十二、占空比产生的损耗

       以额定功率行驶,改变占空比

       限制时间的持久 EV 比赛中,参赛者一般采用额 定的功率消耗和巡航速度行驶的控制方法。这都是因 为易于能量管理。很多名次靠前的团队会在起动时、弯道减速时使 用 PWM 斩波,剩下时间的占空比为 100%。加速时会 采用进角控制与提高电压的方法。

       50% 占空比与 100%占空比的损耗相差数倍 假设开通时间占整体的 50%,且每段时间的驱动 力相同,则电流为平时的 2 倍。焦耳热损耗与电流的平方成正比,因此 100% 占 空比时的损耗是 50% 占空比时的 4 倍。又因损耗存在 时间(开通时间)为 50% 占空比时的 2 倍,所以每段 时间产生的焦耳损耗是原来的 2 倍。即使降低MOSFET的开关损耗也无法弥补这个量。

       希望以 100% 占空比行驶按照想法,笔者希望将占空比调节为100%行驶。

       如前所述,线圈为电感,在开关开通期间储存电能, 关断期间释放电能,如图 7所示。

       图7

       观察图形,可知 UH 处于开通状态。随着上臂 PWM 斩波,UH 反复快速地开关。此时,LH 始终处 于关断状态。在 UH 与 LH 全部关断的情况下,观察图 6 可知,线圈电感通过 UL 寄生二极管续流。

十三、断电后电机中也有电流

       续流时的电源并不是电池,而是电机线圈。斩波 时开关关断,电源电流不流通,但线圈中还会继续流 通电流。当然,电源侧(电池与控制器间)的电流仅在 开关开通时流通。斩波时,电机线圈中产生反向电流(图 8)。

       图8

十四、同步整流的损耗对策 损耗被分成数万份

       线圈电流波形有少量波动。虽存在些许误差,但 对于平均电流, 线圈电流 × 占空比 = 电源电流 的关系仍成立。平均值不是效值。关断时,UL 的寄生二极管续流会形成寄生二极管 正向压降。假设电压为 12V,则压降约 1V。损耗 = 正向电阻 × 电流,因流通数安培的电流, 所以损耗也不可小视。但同步整流可降低损耗。

十五、如果设置同步整流

       同步是指生成互补 PWM 信号,在上臂关断期间, 让下臂开通。寄生二极管产生的损耗可式减小为 通态电阻 × 电流 2 通态电阻随 MOSFET 型号的不同而不同,约为 1mΩ。

十六、无法完全同步

       上臂与下臂交替开通,即两臂不可同时开通,否 则会导致电源短路。因此,两臂需设置同时关断的时 间——死区。两臂同时关断会产生寄生二极管损耗。

十七、栅极电路的损耗

       MOSFET 的栅极电流较大为了快速开关,MOSFET 的栅极电流达到 2A,是 非常大的电流。从电流大小来看,似乎损耗很大。但这实际上是 峰值,栅极负载为电容。每次开关的损耗为栅极电量 × 栅极电压 2 因此,损耗并不取决于栅极电流的大小,而取决 于栅极电容和开关次数。这种损耗并不是很大,但开关损耗取决于寄生二 极管压降以及开关延迟期间的电阻。

半导体是什么行业?

半导体行业隶属电子信息产业,属于硬件产业,以半导体为基础而发展起来的一个产业,是信息时代的基础。

       半导体行业(Semiconductor industry),隶属电子信息产业,属于硬件产业,信息时代的基础,以半导体为基础而发展起来的一个产业。

       1、半导体行业主要是做集成电路、消费电子、通信系统、光伏发电、照明应用、大功率电源转换等领域。如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。

       2、今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

光伏逆变器十大名牌排行榜_光伏逆变器哪个品牌好?(光伏逆变器品牌前十排名)

       光伏逆变器十大名牌排行榜,光伏逆变器哪个品牌好?

       _要说光伏逆变器,2022年首推华为,因为华为不止会做手机,和领先于世界的5G技术专利,它的光伏组串式逆变器也是我国十大品牌的NO1,无愧于高科技领域的领头羊。

       华为的光伏太阳能的组串式逆变器的转化效率高达98.65%。同行业遥遥领先于其他生产厂家。

       _光伏太阳能逆变器是一种将光伏太阳能板产生的不断变化的直流电压转换成与电网频率一样交流电的逆变器。

       这种光伏组串式逆变器与普通车载蓄电瓶为提供电能的逆变器工作原理差不多,不过它需要根据组串式模块和太阳光照射的光亮,组成最佳状态工作模式,最大限度增加太阳能板的发电量。其中要用一种跟踪技术。简单理解为逆变器配合光伏阵列的特殊功能,它是光伏太阳能板平衡,内部包括实时反馈电网与输送光伏电能的装置。

       _这种组串式太阳能逆变器的功率一般在50KVA以下,但它的直流电压为1100V左右波动,而要求逆变器的输入直流工作电压为600V,其输入直流电流根据功率而定。一般光伏太阳能逆变器的过载能力比较大,例如5000W额定输出功率,它最大输出功率为5500VA,额定输入电流7.2A,最大输出电流为8.0A。

       不过一部华为智能光伏控制器的价格不菲,例如SUN2000-36KTL就要18018.00元人民币。

       除此之外排行榜上的是:

       第二名为→

       阳光电源SUNGROW,综合评分为9.7分;

       第三名为

       →上能电气SINENG

       综合评分为9.6分;

       第四名为→古瑞瓦特Growatt

       综合评分为9.4分;

       第五名为→固德威GOODWE

       综合评分为9.0分;

       第六名为→特变电ITBEA综合评分为8.8分;

       第七名为→科华技术KELONG

       综合评分为8.7分;

       第八名为→科士达KSTAR综合评分为8.6分;

       第九名为→锦浪Ginlong综合评分为8.3分;

       第十名为→首航新能源

       综合评分为8.0分。

       知足常乐2022.3.2日晚于上海

       目前来说,光伏逆变器十大名牌没有固定的排名。因为逆变器分类太多,很多企业擅长的逆变器细分领域是不同的,很难得出一个靠谱的排名。大家选择光伏逆变器,不管是什么牌子,都要优先看内部的配置,和机子的详细参数,根据个人的需求来进行选择,这样才能找到适合自己的逆变器。像古瑞瓦特是光伏逆变器领域做得数一数二的了,是国内知名的光伏逆变器厂家,他们家的产品类型多,适用性广,稳定可靠,操作简单便捷,智能化,我们厂这几年一直有在用的,质量蛮不错,楼主可以关注下~

       这个排名每年都不固定,不过古瑞瓦特的太阳能逆变器质量跟性能挺不错的呀,每年都是全球top10品牌,全球户用逆变器第一,他们在这个领域做得比较知名,技术创新实力强,研发的产品类型也多,适用于户用、商用、光伏扶贫、大型地面电站及各类储能电站场景,并已在全球广泛应用。而且这家服务也做得非常细心,楼主你要是需要买光伏逆变器的话,选择这种大品牌准不会错咯!

       具体的排名没有去了解过,就国内来说的话,像古瑞瓦特、固德威都做得不错,我们之前做电站项目的时候是选择古瑞瓦特的光伏逆变器,他们家有十几年的行业经验,有自己的研发团队,产品系列齐全,而且逆变器最高效率达99%以上,服务也很细心完善,你可以去了解看下。

       全球排名每年都不固定,不过古瑞瓦特的光伏逆变器质量跟性能挺不错的呀,每年都是全球top10品牌,全球户用逆变器第一,他们在这个领域做得比较知名,技术创新实力强,研发的产品类型也多,适用于户用、商用、光伏扶贫、大型地面电站及各类储能电站场景,并已在全球广泛应用。而且这家服务也做得非常细心,楼主你要是需要买光伏逆变器的话,选择这种大品牌准不会错咯!

       光伏逆变器厂家比较出名就几家吧,十大品牌的话不了解,倒是觉得古瑞瓦特不错,他们做光伏逆变器有十几年了吧,在全球名气都挺高的,产品质量非常好,机子智能好操作,性能稳定,发电效率高,而且服务这块做得很好,有问题都会及时回应,你有需求,可以去了解一下。

电力电子技术

       我当时的课程论文。如果采纳需要的话可以给你电子稿。

       电力电子技术在分布式发电中的应用 (浙江大学电气工程学院 电子信息工程

       3080104394) 摘要:分布式发电以其高效、清洁、灵活的特点被世界各国所重视,成为21世纪电力系统最重要的研究方向之一。本文主要通过电力电子技术对电能的转换,电力电子技术对电能质量的改善等方面介绍了电力电子技术在分布式发电中的应用。关键词:电力电子分布式发电分布式电源电能转换电能质量Applications of Power Electronics in Distributed

       Generation Yin Xiang (College

       of Electrical Engineering,Zhejiang Unversity,Hangzhou)Abstract: Because of its

       high eficiency,cleanness and flexibility,Distributed

       Generation (DG)has been paid more attention by many countries in the world and

       has become one of the most important research in power system in 21st.This paper briefly introduces the applications Power Electronics in

       DG through the power transforming by power electronics and the improvement of power

       quality by power electronics.Keywords:Power

       Electronics;Distibuted Generation;Distibuted Sources;Power Quality

       0 引言分布式发电(DistributedGeneration,DG)技术是未来能源技术即电力领域的重要方向。其具有能源利用率高、提高能源供应可靠性和经济效益好的特点。尤其是对于人口众多、资源有限的国家来说,分布式发电技术更是进行可持续发展的最佳选择。[1] 尽管分布式发电技术具有极大的应用潜力,但目前仍未被电力部门所广泛接受。这主要是因为在分布式发电技术中存在着数量众多的分布式电源(Distributed Resource,DR)。一方面,这些分布式电源如何通过电能变换接入电网技术上依然不是十分成熟;另一方面,当数量众多的分布式电源接入电网后,配电网根本性的变化使得电网各种 保护定值与机理发生了深刻变化,同时分布式电源的并网运行可能会引起电网电压和频率偏移、电压波动和闪变等电能质量问题。[2]而这些问题中很大一部分恰恰是电力电子技术可以解决的。 1 分布式发电1.1 分布式发电的定义DG是相对于传统集中式供电方式而言的,是指位于或接近负荷的、模块似的与环境兼容的发电设施,他们或接在配电网上或独立运行,经济、高效、可靠地发电。其主要结构如图1所示。

        [1]黄胜利 , 张国伟 孔 力. 电力电子技术在微电网中的应用[J].电气应用,2008,27(9):55-58.[2]莫颖涛 吴为麟.电力电子技术在分布式发电中的应用[J]. 华北电力术,2004,9:48-54.

       图11.2分布式发电的特点DG系统规模和功率较小;高效、经济、可靠、污染小;独立运行或接在配电网上,并位于负荷附近;对于可再生能源分布式发电,输出功率是间断的。DG在被提出和运用之后,一度被视为解决现有大电网结构臃肿、供用电分离的弊病的良药,这一技术由于其固有特点,要想得到进一步推广,还有不小的问题,其相对于传统发电方式自身容量小,能量输出不稳定,这些问题是分布发电自身先天弱点所致,难以独立克服。[3]2 电力电子技术在分布式电源电能变换中的应用2.1 分布式发电中电能变化的基本分类分布式电源根据使用的一次能源不同大致可以分为两种类型:一种是直流源型,如太阳能、燃料电池和蓄电池等;另一种是需要整流的高频交流源型,如风力发电机、微型燃气轮机等。这两种类型的电源最后都需要转换成标准的工频交流电供给负荷或并网。因此,在整个能量的变换过程中使用到了电力电子技术中的AC—DC,DC—DC和DC—AC三种变流技术。2.1.1 AC-DC变换风力发电机、微型燃气轮机等为不稳定的交流电源,需要首先把它们变成直流电,然后再通过逆变技术变成稳定的交流电。通常使用二极管整流技术。 2.1.2 DC-DC变换太阳能、燃料电池和蓄电池等为直流电源,由于它们的电压等级低,所以必须采用DC—DC中的Boost电路升压至合适的电压等级,然后再进行逆变。另外分布式电源具有在功率输出变化时响应时间长的特点,如微型燃气轮机的响应时间在秒级,而燃料电池则需要数分钟,所以在负荷突变或给定功率变化时会出现有功功率的供给不足;太阳能和风力发电具有波动性大的特点,所以系统中需要加入储能单元。储能单元可以选用超级电容器或蓄电池,同样需要采用Boost电路升压至母线电压。反之,当母线电压过高时,需要采用Buck电路降压对储能单元进行充电,所以储能单元往往采用双向DC—DC进行充放电。[4]2.1.3 DC-AC变换通过AC—DC或DC—DC技术把分布式电源变换到合适电压等级的直流电后,需要采用DC—AC把直流电变换为标准的交流电,供给负荷或并网。 2.2 几种具体应用在分布式发电中的电力电子技术分布式发电目前公认的几种常用而且成本较低的系统是以下几种:[5](1)风能发电系统;(2)光电池;(3)微型气轮机;(4)燃料电池。在这些新型分布式发电系统中,电力电子设备在能量的转换中起到极其关键的技术。任何一种形式的分布式发电都要解决分布式电源与电网、用户、储能系统之间的接口能量转换问题。

        [3]安明瑞 吴冰冰 乔琨. 分布式发电及其应用综述[J].电源应用技术,2010,13(2):40-43.[4] 梁有伟,胡志坚,陈允平. 分布式发电及其在电力系统中的应用研究综述[J]. 电网技术,2003,27(12):71-75.[5]王志群,朱守真,周双喜,等.分布式发电接入位置和注入容量限制的研究[J].电力系统及其自动化学报,2005,17 (1):53-58.

       2.2.1 风能并网系统中的电力电子技术19世纪末丹麦开始研究风力发电技术。它属于交流性质的DGRs。风力发电技术是将风能转化成电能的发电技术,其输出功率由风能决定。风速作用在风力机的叶片上产生转矩,该转矩驱动轮盘转动,通过齿轮箱高速轴、刹车盘和联轴器再与异步发电机转子相连,从而发电运行。由于自然风速的大小和方向是随机变化的,风能具有不稳定性。如何使风力发电机的输出功率稳定是风力发电技术的一个重要的问题。 对于一个一个异步发电机系统,首先经过二极管整流器的整流,然后经过逆变器逆变,再与交流电网相连;机械频率与转子转差频率之和等于电网的频率,转换器的额定功率决定于所选择的速度范围。当异步发电机运行在额定同步转速之上时,转换系统可以实现功率逆向流动。[6] 2.2.2光伏发电系统中的电力电子技术光伏发电系统是属于直流性质的DGRs,是将太阳能电池发出的直流电转化为与电网电压同频、同相的交流电,并且实现既向负载供电,又向电网发电的一个系统。并网系统的核心是并网逆变器,它同时也应该具有独立光伏发电系统的一些功能和特点。它主要由太阳能电池方阵和逆变器两部分组成。光电系统进行能量转换的通用方法是:使用直流一交流(DC-AC)逆变器,将存储在光电池中的直流能量转换为大电网同步的交流电压。[7] 2.2.3燃料电池发电系统中的电力电子技术燃料电池是属于直流性质的DGRs,通过电化学过程将化学能转化成电能,具有效率高、清洁无污染、噪音低、安装便捷经济等特点。燃料电池产生的直流电压经过一个直流一交流(DC-AC)逆变器进行转换,转变为交流电压,其转换过程和光电系统相似直流输电与交流输电相比有许多优势。[8]所以在以上几种发电类型中,电能的传送都是采用直流输电的形式,但是大电网以及人们生活、生产需要的是频率稳定的交流电,所以由电力电子设备组成的整流、逆变电路及其它电力电子接口设备在分布式发电系统的能量转换和传递中起到极其关键的作用。 3 电力电子技术在分布式发电电能质量改善中的应用 3.1 分布式发电(DG)对电能质量不利影响(1)对电压闪变造成影响 电压闪变是灯光照度不稳定而造成的视感,传统电网引起电压闪变的主要原因是负荷的瞬时变化,随着分布式发电的引入,将带来引起电压闪变的其他因素,这些因素主要是以下几个方面:某个大型分布式单元的启动,分布式单元输出的短时剧变,以及分布式单元与系统中电压反馈控制设备相互作用而带来的不利影响。[9](2)给系统带来大量谐波众所周知,电力系统中存在大量的非线性成分从而引入了大量的谐波,谐波的引入对电力系统造成的危害有:增加了电站和用户设备的功率损耗;使敏感负荷或者控制设备发生故障;电网波形中谐波成分比例过大,会使一些电力设备寿命减少。[10]由于电力电子器件大量应用于分布式发电,供电系统中增加了大量的非线性负载,所以不可避免的给系统带来大量谐波,至于带来谐波的幅度和阶次受到发电方式以及转换器的工作模式的影响。

        [6]胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[7] 张超,王章权,蒋燕君.无差拍控制在光伏并网发电系统中的应用[J].电力电子技术,2007,41 (7) :5-5.[8] 唐西胜. 超级电容器储能应用于分布式发电系统:[博士学位论文][D]. 齐智平:中国科学院电力系统及其自动化,2006.[9] 胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[10]程华,徐政.分布式发电中的储能技术[J1.高压电器,2003,39(3):53-56.

       3.2 电力电子技术对电能质量的改善电能研究协会(EPRI)为了寻找改善分布式系统性能的先进技术,现已做了大量深入的研究。这种用户电力(CUSTOM POWER)的技术将现代电力电子控制器、分布自动化以及完整的通信结合在一起,为用户终端提供高质量的电能。尽管非常有用,但是CUSTOM POWER 设备应用在分布式系统中的范围很有限。近年来,一些用于快速控制的设备陆续被研制出来,固态断路器(SSB)、静态无功补偿器(STATCOM )和动态电压恢复(DVR)都属于现代电力电子控制器。STATCOM、LTC与机械转换电容三者相互协调可以减少系统电压波动。以STATCOM 为代表的这些用于分布式系统控制的电力电子设备已经得到充分的论证,这些设备不仅可以实现连续控制而且还可以对系统变化作出实时反应。分布式系统中用电力电子设备来控制电能质量,现在应用得还很保守,主要是因为成本太高,只有在非常重要的负荷(如医院)才采用这种方法。最为普遍的电力电子设备是UPS,它在计算机系统中得到非常广泛的应用。[11]由于以后计算机技术将会更加深入到生活和生产中,所以对经济性的电力电子设备的需求将急剧增加,其中一些经济性电力电子设备将用于处理瞬时扰动、电压陷落或其它电能质量问题。 4 结语由于当前发电模式的种种弊端,非可再生能源的枯竭,世界各国对环境保护的重视,分布式发电将成为未来世界最主要的发电模式。从本文对分布式发电的多方面分析可以看出,电力电子技术在分布式发电中有着极其广泛的应用,因此大力研究推广电力电子技术可以为分布式发电技术打开新的突破口,从而进一步促进可再生能源的普及与推广。 参考文献 [1]黄胜利 , 张国伟 孔 力. 电力电子技术在微电网中的应用[J].电气应用,2008,27(9):55-58.[2]莫颖涛 吴为麟.电力电子技术在分布式发电中的应用[J]. 华北电力术,2004,9:48-54.[3]安明瑞 吴冰冰 乔琨. 分布式发电及其应用综述[J].电源应用技术,2010,13(2):40-43.[4] 梁有伟,胡志坚,陈允平. 分布式发电及其在电力系统中的应用研究综述[J].

       电网技术,2003,27(12):71-75.[5]王志群,朱守真,周双喜,等.分布式发电接入位置和注入容量限制的研究[J].电力系统及其自动化学报,2005,17 (1):53-58.[6]胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[7] 唐西胜. 超级电容器储能应用于分布式发电系统:[博士学位论文][D]. 齐智平:中国科学院电力系统及其自动化,2006.[8] 张超,王章权,蒋燕君.无差拍控制在光伏并网发电系统中的应用[J]. 电力电子技术,2007,41

       (7) :5-5.[9] 胡学浩.分布式发电(电源)技术及其并网问题[J]. 电工技术杂志,2004 (10):1-5.[10]程华,徐政.分布式发电中的储能技术[J1.高压电器,2003,39(3):53-56.[11]吴靖,江吴.分布式发电的应用及前景.农村电气,2003,(7):1 9-20.

       [11]吴靖,江吴.分布式发电的应用及前景.农村电气,2003,(7):1 9-20.

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言