发布时间:2024-10-19 13:20:17 人气:
逆变器的使用注意事项包括什么?
1、直流电压要一致
每台逆变器都有接入直流电压数值,如12V,24V等,要求选择蓄电池电压必须与逆变器直流输入电压一致。例如,12V 逆变器必须选择12V蓄电池。
2、逆变器输出功率必须大于电器的使用功率,特别对于启动时功率大的电器,如冰箱、空调,还要留大些的余量。
3、正、负极必须接正确
逆变器接入的直流电压标有正负极。红色为正极(+),黑色为负极(—),蓄电池上也同样标有正负极,红色为正极(+),黑色为负极(—),连接时必须正接正(红接红),负接负(黑接黑)。连接线线径必须足够粗,并且尽可能减少连接线的长度。
4、应放置在通风、干燥的地方,谨防雨淋,并与周围的物体有20cm以上的距离,远离易
燃易爆品,切忌在该机上放置或覆盖其它物品,使用环境温度不大于40℃。
5, 充电与逆变不能同时进行。即逆变时不可将充电插头插入逆变输出的电气回路中.
6、两次开机间隔时间不少于5秒(切断输入电源)。
7、请用干布或防静电布擦拭以保持机器整洁。
8、在连接机器的输入输出前,请首先将机器的外壳正确接地。
9、为避免意外,严禁用户打开机箱进行操作和使用。
10、怀疑机器有故障时,请不要继续进行操作和使用,应及时切断输入和输出,由合格的检修人员或维修单位检查维修。
11、在连接蓄电池时,请确认您的手上没有其它金属物,以免发生蓄电池短路,灼伤人体。
12使用环境 基于安全和性能的考虑,安装环境应具备以下条件:
<1> 干燥:不能浸水或淋雨
<2> 阴凉:温度在0℃与40℃之间
<3> 通风:保持壳体上5CM内无异物,其它端面通风良好
13. 安装使用方法
<1> 将转换器开关置于关(OFF)的位置,然后把雪茄头插入车内点烟器插口,确保插到位而接触良好.
<2> 确认所有电器的功率在G-ICE标称功率以下方可使用,将电器的220V插头直接插入转换器一端的 220V插座内,并确保两个插座所有连接电器的功率之和在G-ICE标称功率以内.
<3> 开启转换器开关,绿色指示灯亮,表示工作正常。
<4> 红色指示灯亮,表示因过压/欠压/过载/过温,导致转换器关断。
<5> 在很多情况下,由于车用点烟器插口输出有限,使得正常使用时转换器报警或关断,这时只要发动车辆或减小用电功率即可恢复正常。
14.注意事项
<1> 电视机,显示器,电动机等在启动时电量达到峰值,尽管转换器可以承受标称功率2倍的峰值功率,但有些功率符合要求的电器的峰值功率可能会超过转换器的峰值输出功率,引发过载保护,电流被关断。同时带动多个电器,可能发生这种情况,这时应先关闭电器开关,打开转换器开关,然后逐个打开电器开关,并应最先开启峰值最高的电器。
<2> 在使用过程中,电瓶电压开始下降,当转换器DC输入端的电压降到10.4-11V时,报警器发出峰鸣声,此时电脑或其它敏感电器应及时关闭,若忽视报警声,转换器将在电压到9.7-10.3V时,自动关断,这样可以避免电瓶被过量放电.电源保护关断后,红色指示灯亮起.
<3> 应及时启动车辆,给电瓶充电,防止电量衰竭,影响汽车启动和电瓶寿命.
<4> 尽管转换器没有过压保护功能,输入电压超过16V,仍有可能损坏转换器.
<5> 连续使用后,壳体表面温度会上升到60℃,注意气流通畅,易受高温影响的物体应远离.
修正逆变器与正弦逆变器的区别
1.1逆变器功率器件的选择
目前,国内的光伏发电系统(PhotoVoltaic Sys-tem,简称PVS)主要是以直流系统为主,但最普遍的用电负载是交流负载,这使直流供电的光伏电源很难作为商品普及推广。同时,由于太阳能光伏并网发电可以不要蓄电池,且维护简单,而节省投资是光伏发电的发展趋势。这些都必须采用交流供电方式,因此逆变器在PVS中的应用也就越来越重要了。逆变器是将直流电变换为交流电的电力变换装置,逆变技术在电力电子技术中已较为成熟。例如:UPS电源中的逆变器,变频技术中的逆变技术、特种电源中的逆变技术和功率调节器中的逆变技术等,这些都已经以产品的形式推向市场,并受到社会的广泛认可。
在小容量、低压PVS中,功率器件多使用金属-氧化物-半导体场效应管(MOSFET)。因其在低压时,具有较低的通态压降和较高的开关频率,但随MOSFET电压的升高,其通态电阻增大。因此,在大容量、高压PVS 中,一般使用绝缘栅晶体管(IGBT)作为功率器件;在100kVA以上特大容量的PVS中,一般采用门极可关断晶闸管(GTO)作为功率器件。PVS中的逆变驱动电路主要针对功率开关管的门极驱动。要得到好的PWM脉冲波形,驱动电路的设计很重要。近年来,随着微电子及集成电路技术的发展,陆续推出了许多多功能专用集成芯片,如:HIP4801,TLP520,IR2130,EXB841等,它们给应用电路的设计带来了极大的方便[1,2]。逆变电源中常用的控制电路主要是为驱动电路提供要求的逻辑和波形,如PWM,SPWM控制信号等。目前,较常用的芯片有国外生产的8XC196,MP16,PIC16C73 和国内生产的TMS320F206,TMS320F240 ,SG3525 等。
1.2 PVS 中逆变器的拓扑结构图
在使用蓄电池储能的太阳能PVS 中,蓄电池组的公称电压一般是12V,24V 或48V,因此,逆变电路一般都需进行升压来满足220V 常用交流负载的用电需求。逆变器可按升压原理的不同分为工频和高频两种逆变器,应用中它们的性能差别很大。
(1)工频逆变器
图1示出采用工频变压器升压的逆变电路。它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz的交流电供负载使用。它的优点是结构简单,各种保护功能均可在较低电压下实现。因其逆变电源与负载之间存有工频变压器,故逆变器运行稳定、可靠、过负荷能力和抗冲击能力强,且能够抑制波形中的高次谐波成分。然而,工频变压器也存在笨重和价格高的问题,而且其效率也比较低。按目前水平制作的小型工频逆变器,其额定负荷效率一般不超过90%,同时因工频变压器在满负荷和轻负荷下运行时铁损基本不变,因而使其在轻负荷下运行的空载损耗较大,效率也较低。
(2)高频逆变器
图2示出采用高频变压器升压的逆变电路。它首先通过高频DC/DC 变换技术,将低压直流电逆变为高频低压交流电;然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电;最后通过工频逆变电路得到220V工频交流电供负载使用。由于高频逆变器采用的是体积小,重量轻的高频磁芯材料,因而大大提高了电路的功率密度,从而使逆变电源的空载损耗很小,逆变效率得到提高。通常,用于中小型PVS 中的高频逆变器,其峰值转换效率能达90% 以上。
比较两种逆变器可知,高频逆变器的体积小,重量轻,效率高,空载负荷低,但不能接满负荷的感性负载,且过载能力差。
1.3 PVS 中逆变器输出波形
(1)方波逆变器
图3a
示出方波逆变器的输出电压波形。虽然方波逆变器具有结构简单,成本低等优点,但也存在效率较低,损耗多,谐波成分大,使用负载受限制等缺点。当负载为大功率电机负载或带有变压器的用电器负载时,因其负载的饱和磁通都是按正弦波的上升速率设计的,而方波的上升速度过快,因而造成其铁心饱和,负载会出现起动困难、铁心过热及发出噪声等问题。而且方波逆变器的效率远低于修正波和正弦波逆变器的效率,一般不到60% 。由于太阳能PVS的发电成本较高,因此在太阳能PVS 电系统的优点是结中,方波逆变器已经很少应用了。
(2)修正波逆变器
图3b示出修正波逆变器的输出电压波形。与方波相比,修正波的波形有明显改善,而且高次谐波含量也减少了。传统的修正波逆变器是通过对方波电压进行阶梯迭加而产生的,这种方式存在控制电路复杂,迭加线路所用的功率开关管较多,以及逆变器的体积和重量较大等诸多问题。近年来,随着电力电子技术的快速发展,已普遍采用PWM脉宽调制方式生成修正波输出。目前,修正波逆变器已广泛用于边远地区的用户系统,因为这些用户系统对用电质量要求不是很高,而它能够满足大部分用电设备的需求,但它还是存在20% 的谐波失真,在运行精密设备时会出现问题,也会对通讯设备造成高频干扰,因此此时必须使用正弦波逆变器。
(3)正弦波逆变器
图3c
示出正弦波逆变器的输出电压波形。它的优点是输出波形好,失真度很低,且其输出波形与市电电网的交流电波形基本一致,实际上优良的正弦波逆变器提供的交流电比电网的质量更高。正弦波逆变器对收音机和通讯设备及精密设备的干扰小,噪声低,负载适应能力强,能满足所有交流负载的应用,而且整机效率较高;它的缺点是线路和相对修正波逆变器复杂,对控制芯片和维修技术的要求高,价格较贵。在太阳能发电并网应用时,为避免对公共电网的电力
污染,也必须使用正弦波逆变器。
2 太阳能PVS 中逆变器分类
2.1 独立型逆变器
图4示出独立PVS 结构图。它通常由光伏阵列、蓄电池、控制器、逆变器及用电负载等5部分组成。
目前也有把蓄电池充放电控制器和逆变器做成一体的独立型逆变器。例如:Solarix 正弦波逆变器,它既有将直流电逆变成交流电的功能;也有对蓄电池充放电进行管理的功能。
根据独立型逆变器在PVS 中的运行特点,可对用于独立PVS 的逆变器进行下述性能评价。
(1)可靠性
从以往PVS 的运行来看,逆变器是影响系统可靠性的主要因素之一。由于独立型逆变器一般工作在边远地区,一旦出现问题维修很不方便,所以独立型逆变器的首要要求是必须运行可靠安全。
(2)额定输出容量
在独立型逆变器中,额定输出容量也是一个很重要的参考因素,它表示逆变器向负载供电的能力。额定输出容量值高的逆变器可带更多的用电负载。在此需特别指出的是,当逆变器不是纯阻性负载时,逆变器的负载能力将小于它所给出的额定输出容量值。
(3)逆变器效率
逆变器效率的高低对系统提高有效发电量和降低发电成本有着重要的影响。由于目前太阳电池的成本仍然比较高,而且近年也不会有大的降低,因此对于独立型逆变器,则要求有高的效率,特别是低负荷供电时,仍然有较高的效率,低的空载负荷是独立PVS 中专用逆变器相对普通逆变器的更高要求。
(4)起动性能
一般电感性负载,如电机、冰箱、空调、洗衣机、大功率水泵等,在起动时,功率可能是额定功率的5~6倍。因此,通常电感负载起动时,逆变器将承受大的瞬时浪涌功率。逆变器应保证在额定负载下可靠起动,高性能的逆变器可做到连续多次满负荷起动而不损坏功率器件。小型逆变器为了自身安全, 有时需采用软起动或限流起动。
(5)谐波失真
当独立型逆变器输出波形是方波和修正波时,逆变器的输出电流中除了基波外还有高次谐波,高次谐波电流会在电感性负载上产生涡流等附加损耗,导致部件严重发热,不利于电气设备的安全。方波逆变器的谐波失真大约在40% 左右,一般只适用于电阻负载;修正波逆变器的谐波失真小于20%,适合用于大部分负载;正弦波逆变器的谐波失真小于3%,其波形质量比市电电网的质量还好,能够适用于所有的交流用电负载。
(6) 输出电压稳定能力
它指逆变器输出电压的稳压能力。独立太阳能PVS中蓄电池端电压在充放电过程中波动很大,通常铅酸蓄电池端电压的起伏可达标称电压的30 %左右,这就要求逆变器有较好的调压性能,能在较大直流输入范围内保证正常工作。高频逆变器因采用了二次调宽和二次稳压技术,故相对工频逆变器有更好的稳定输出电压的能力。
逆变器检修需要开操作票
需要开。操作票是指在电力系统中进行电气操作的书面依据,包括调度指令票和变电操作票。逆变器是属于电力系统,所以需要开操作票。对于逆变器:
1、应定期检查逆变器各部分的接线是否牢固,有无松动现象,尤其应认真检查风扇、功率模块、输入端子、输出端子以及接地等。
2、应查明原因并修复后再行开机,检查应严格按逆变器维护手册的规定步骤进行。
一只1000W逆变器正常使用时没有停机就合闸220V电网连接,逆变器烧毁了,请问怎样检修。
返向送电烧坏呀,IGBT模块不保了,整流桥也完了,电源开关管应该没有事的。这种伤是致命的。有图纸的话,依图维修重点查主输出电路,维修后送电前,用40W钨丝灯泡串进L进线端,如果正常工作了,灯泡微亮,如果有短路,灯泡常亮
逆变器一级检修里程为多少万千米
30万千米。根据逆变器检修维护规程得知,一级检修为30万公里 二级检修为60万公里 三级检修为120万公里,且公里与千米之间的转换为1公里等于1千米,所以逆变器一级检修里程为30万千米。逆变器是把直流电能(电池、蓄电瓶)转变成定频定压或调频调压交流电(为220V,50Hz正弦波)的转换器。
变频器维修哪家修得好?
可以找苏州东辉自动化维修
可以浏览一下该公司的网站,我们一直是找在一家公司维修的,是苏州地区比较专业的自动化维修中心。
利用变频技术对交流电机进行调速不仅在性能指标上远超过传统的直流调速,而且在诸多方面都优于真流电动机调速。因此,在各个领域,变频器都得到了广泛的使用。然而在长期的运行过程中,变频器中的元器件不可避免地会因为各种原因出现这样或那样的故障。
快速地对变频器故障进行修复,不但要有一定的理论基础,而且还必须有大量的实践经验。
现介绍。
1.逐步缩小法
就是通过对故障现象进行分析、对测量参数做出判断,把故障产生的范围逐步地缩小,最后落实到故障产生的具体电路或元器件上的判断过程。
例如,一台变频器通电后,发现操作盘上无显示。首先判断是无直流嵌电(可用万用表测量其直流电源电压),经查发现高压指示灯是亮的(测量PN电压进一步证实),说明不是主回路高压电路的故障,而是开关电源中给操作盘供电的一路电源有问题。测该路电源的交流电压正常.但无直流输出,又无短路现象,经查是该电源电路的整流管损坏。
上述检修过程就是典型的逐步缩小法。
它的整个过程就是通过分析和参数测量,判断、肯定、否定几个回合,最后肯定是整流管损坏。
2.顺藤摸瓜法
就是根据变频器工作原理,顺着故障现象,沿着信号通路,逐步深入,直达故障发生点,最终寻找到故障产生部位的一种方法。
例如,一台变频器输出电压三相不平衡。这种故障是由两种可能性造成的:一种可能是逆变桥内6个单元至少有1个单元损坏(开路),另一种可能是6组驱动信号中至少有1组损坏。假设已确定有1个逆变单元无驱动信号,欲进一步确定驱动电路中故障的产生部位,即可采用“顺藤摸瓜”法来寻找。具体到这个例子,可从上而下地查,即从驱动信号的源头,也就是CPU的输出端起往下查。
CPU输出有信号时检查光耦输入端有无信号,若无信号,则CPU到光耦输入端有断线现象。若有信号,则要检查光耦输出端,看光耦输出端有无信号。若无信号,则表明光耦损坏。若有信号,则再检查放大电路的输入端和输出端,若输入端有信号而输出端无信号,则表明故障产生在放大电路(放大管或相关元器件损坏)。
当然也可以从下向上来查,即从驱动信号输出端开始,也就是逆变器件的控制端往上查。逆变器件控制端无驱动信号,检查放大电路的输出端;有信号则表明放大电路与逆变器件控制端有断电现象。若无信号则再检查放大电路的输入端,输入端有信号则表明放大管或相关元器件损坏.若仍无信号此时检查光耦输出端看有无信号。若有信号,则放大电路输入端与光耦输出端有断线现象.若无信号,则继续向上检查光耦输入端看有无信号。
若此时有信号,则表明可能是光耦损坏或输出端电源不正常。若光耦输入端无信号而CPU输出端有信号,则CPU与光耦输入端之间有断线现象,或光耦输入端直流电源不正常。
3.直接切入法
就是根据故障现象直接判断故障位置,更换故障元器件,快速排出故障。对于各电路工作原理掌握得比较扎实又有丰富的修理经验,修理水平较高的人员,通常采用直接切入法。另外,对于一些比较典型的故障也可以采用直接切入法来处理。
例如一台安川616PC5型变频器接通电源后.操作盘上无任何显示,但高压指示灯亮.且其它低压直流供电正常。根据附图所示的开关电源部分电路图,我们判断为电源侧有短路现象(怀疑可能是滤波电容器老化损坏导致电源侧短路),直接更换新电容,短路现象消除。接通变频器电源,发现操作盘这一路仍无直流电压,结合原理分析,疑为整流二极管损坏开路。更换整流二极管后,这一路直流供电恢复正常,变频器也恢复正常工作。
由上述检修过程可知,如果维修人员对变频器各部分的原理很熟悉,根据此台变频器无显示故障,直接就可以判断出来这是由于提供给操作盘的低压直流供电这路电源出了问题,导致操作盘无直流供电,出现无任何显示故障。
4.电位、电压分析法
变频器在不同的状态下,各部分电路中各点都具有不同的电位分布,因此,可以通过测量和分析电路中某些检测点的电位.确定电路故障的类型和部位。另外阻抗的变化造成了电流的变化,电位的变化也造成了电压的变化,因此,也可采用电流分析法和电压分析法确定电路故障。5.菜单法
即根据故障现象和特征,将可能引起这种故障的各种原因顺序罗列出来,然后一个个地查找和验证,直到确诊出真正的故障原因和故障部位。此法比较适合初学者使用,此处不再详加赘述。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467