发布时间:2024-08-13 21:30:24 人气:
电动机励磁控制柜有哪些配置
3.2整流回路
如原理图所示,同步电动机微机励磁装置采用三相全控桥整流,其输出供给同步电动机励磁电流,控制回路通过对同步电动机的励磁电流,励磁电压,定子电流,定子电压,功率因数等参数进行测量,按一定的控制规律和控制方式进行运算,计算出可控硅触发角,通过经过触发角移相的触发脉冲来控制相应的可控硅导通,得到不同的直流输出电压,实现控制同步电动机的目的。
3.3启动回路
当同步电动机启动时,灭磁环节自动投入工作。由转子感应的交变能量通过灭磁电阻释放,保证同步电动机正常启动。当电动机转速达到额定转速的90%(可整定)时,对于降压启动的同步电动机,由控制器发出投全压信号,切除降压启动设备,使电动机加速启动。当电动机的转速达到额定转速的95%(可整定),控制器向可控硅发出触发脉冲,装置自动向同步电动机投入励磁,同步电动机牵入同步运行。
3.5进线空开
进线空开安装于外部励磁电源进线与整流变压器一次测中间,作为励磁电源投切及输入过流保护用。常规型号带有一辅助触点作为空开位置指示。用户可选带有电动操作机构的空开,S300励磁控制器均配有电动操作控制接口。另用户可选带有报警触头的空开,将报警常开触头接至控制器过流保护接口。
空气开关的容量根据励磁变压器容量选择,详见装置配置清单。
3.6整流变压器
本装置常规配置为三相干式整流变压器,绝缘等级B级,组别DY11。
3.7指示仪表
本装置配有指针式功率因数表、定子电流表、励磁电压表和励磁电流表。
3.8信号测量
在励磁输出的主回路上配置有穿心式霍尔传感器,用于励磁电流测量。
定子电流传感器,定子电压传感器,励磁电压传感器皆集成到S300励磁控制器内部进行测量。
3.9风机单元
本装置采用台湾卡固无电容风机,并设有风机控制和风机监视。
3.10励磁控制器
3.11触摸屏面板
3.12对外端子
3.13远程操作通信接口
四、S300微机励磁调节器说明
S300同步电动机微机控制器是整个系统装置的核心装置。其负责整个励磁装置的控制、测量、保护、通信等。每个调节器都设置有软标签,标签的信息包括调节器型号、序列号、版本号等。其中序列号是控制器区别的唯一标识。
4.1 调节器硬件结构
4.1.1外形
S300微机控制器为独立的单元结构,除了励磁电流传感器需要外置以外,其它所有单元均集成在控制器内部。控制器冷却方式为自然冷却,上下设有通风网孔,以防止尘埃进入。其外形尺寸如图所示:
4.1.2 端子
S300微机控制器采用知名厂家订购的插拔式端子,确定了其良好的接触性能。接线端子分为上下两排,上排为传感器信号,下排为开关量输入输出信号,有效的进行了强弱电的分离。接线端子安排如下表所示:
4.1.3 模拟量测量
a 励磁电流
励磁电流的测量由安装在柜内的穿心式霍尔励磁电流传感器完成。励磁电流传感器通过霍尔效应将励磁电流变换成小电流信号送入调节器内部,调节器内部通过取样电阻转换成电压信号,再经过信号调理送入调节器的中央处理器,实现励磁电流的测量。
因励磁电流传感器规格根据同步电动机的额定励磁电流进行选择,所以其通常有如下几种规格选择:
注意:根据励磁电流传感器的型号不同,需在调节器的参数设定中配置励磁电流传感器的一次侧电流值。
b励磁电压
励磁电压的测量由配置于调节器内部的霍尔励磁电压传感器完成。通过取灭磁可控硅两端的电压信号送入控制器内部,控制器内部经过取样电阻变成小电流信号送入霍尔励磁电压传感器隔离变送后再经过信号调理送入调节器中央处理器,实现励磁电压的测量。
c定子电流
定子电流信号由同步电动机启动柜内的电流互感器将电机电流变换成标准的额定电流为5A的标准信号送入控制器内部,控制器内部再经过高精度的电流传感器变换成小电流信号经过调理送入中央处理器。定子电流的测量范围最大为6A,极限输入电流为30A。
由于存在CT变比的问题,所以须在调节器的参数设定中配置互感器的CT变比。
d母线电压
母线电压信号由同步电动机启动柜内电压互感器将额定为100V的电压信号送入控制器内部,控制器内部通过取样电阻送入高精度电压传感器,传感器将电压信号变换成小电流信号后再经过调理送入中央处理器。定子电压信号测量范围最大为120V,极限输入为150V,输入阻抗为 ** KΩ。
由于存在PT变比的问题,所以须在调节器参数设定中配置PT变比。
4.1.4 功率因数测量
同步电动机的电流、电压交流信号经过控制器内部互感器后,通过信号调理转换成两组标准的方波信号送入中央处理器的脉冲捕获端口,中央处理器通过测量两路方波信号的时间差计算出功率因数。
母线频率的测量也是通过电压的方波获得的。
由于在PT和CT的接线时存在随机接线的情况,本控制器特经过特殊处理,所以对PT和CT的接线只要求为一相的电流和另两相的电压,对接线顺序不做任何要求。
4.1.5 同步信号
用于整流可控硅触发的三相同步信号,取自整流变压器的二次侧,所以对整流器的连接组不做要求,控制器通过内部的三个传感器隔离后变成小电流信号,再经过信号调理变换成三路方波信号送入CPLD单元进行同步采样。
三相电压的输入范围为AC30V~AC350V。线间输入阻抗为** KΩ。
4.1.6触发脉冲输出
控制器内部CPLD产生的六路双窄脉冲经过光耦隔离,推动达林顿管来驱动脉冲变压器。
4.1.7 开关量
a开关量输入
S300微机控制器内部配置15路光耦隔离的开关量输入,采用控制器内部的DC+24V作为操作电源,极限输入电压DC30V,接点量输入回路对地绝缘大于1000V。
b开关量输出
S300微机控制器内部配置11路继电器输出接点,每组触点容量不低于3A(长时间吸合电流不宜大于1A)。
4.1.8 电源配置
控制器内部集成开关电源,有+24V,+15V,-15V,+5V四路输出,具有短路,过流等保护。控制器内部对四路开关电源进行监视。
由于采用开关电源,电源的输入范围为AC220V±20%或DC220V±20%。
+24V引出至端子,供开关量输入,输出与触摸屏显示用,不可用于其它回路。最大输出能力为500mA。
4.1.9 通信端口
控制器内部集成三个通信端口,其功能与接线如下:
PORT0:用于就地显示用通信,DB9母型接口,隔离的RS232电平标准,遵循标准的MODBUS RTU协议,通信波特率9600,支持热插拔。
PORT0(母头)
引脚 信号名称
2 232 TXD
3 232 RXD
5 232 GND
触摸屏
引脚 信号名称
2 232 RXD
3 232 TXD
5 232 GND
PORT1:用于远程通信,DB9母型接口,隔离的RS485电平标准,遵循标准的MODBUS RTU协议,默认通信波特率9600,支持热插拔。
PORT1(母头)
引脚 信号名称
2 485 TXD
3 485 RXD
5 485 GND
远 程
引脚 信号名称
2 232 RXD
3 232 TXD
5 485 GND
PORT2:用于双机通信用(只有双机配置时),DB9母型接口,隔离的CAN总线标准,通信速率500Kbit/s。
PORT2(母头)本套
引脚 信号名称
2 CAN TXD
3 CAN RXD
5 CAN GND
PORT2(母头)另套
引脚 信号名称
2 CAN RXD
3 CAN TXD
5 CAN GND
4.2 调节器软件构成
S300微机控制器配置功能强大的软件系统,其中央处理器的DSP内核可进行单周期的浮点数运算,大大增强了其数据处理的速度,是其它常规单片机或PLC控制器无法比拟的。运用可编程逻辑器件CPLD作为触发单元,杜绝了现场信号的干扰对系统运行的影响,大大提高了系统的稳定性。
4.2.1 同步信号采样及触发脉冲形成
同步信号采样及触发脉冲形成均由可编程逻辑器件CPLD独立完成,这样不仅解放了中央处理器,而且取消了以往用单一定时器控制触发角的方法,做到三路同步信号无延时同步采样。由于三相交流信号每个周期存在六个过零点,所以触发角调节为每周期调整六次,控制器调节速度为300 次/秒。
4.2.2 调试状态控制
在励磁工况为调试时,励磁就绪信号,投全压信号无输出,起车信号无效,若此时起车信号输入则控制器的故障停机继电器动作。按下投励按钮系统立即投入励磁,若为手动模式,则系统自动进行调节稳定到系统设定值,此时按增磁减磁按钮调节的为恒励磁电流调节器的给定值。若为开环模式,则系统按当前的触发角输出励磁电流,此时按增磁减磁按钮调节的为可控硅的触发角。
4.2.3 起车投励控制及停机
在励磁工况为工作状态,若满足起车条件则励磁就绪信号输出。当同步电动机起车后,励磁控制器起车监视定时器开始计时,在达到防早投时间后,励磁控制器开始检测系统滑差。当系统滑差达到设定的投全压滑差或起车监视定时器达到设定的投全压时间时,投全压控制继电器吸合并保持5秒。当系统滑差达到设定的投励滑差或起车监视定时器达到设定的投励时间时,控制器的中央处理器按照捕捉到的准角顺极性投入励磁。若在达到防早投时间后人为的按动投励按钮,则中央处理器立即投入励磁,因此种方式不检测系统滑差与投励角度所以只在极端情况下使用。
控制器设有起车强励功能,可使同步电动机更轻松的牵入同步。强励倍数与强励时间可通过触摸屏整定,非负载过重的情况下请采用系统默认的整定值。
对于全压启动的同步电动机系统,投全压输出信号依然存在,只不过该信号不做连接。
当主断路器断开瞬间,控制器启动逆变灭磁操作,将并持续2秒钟。
4.2.4 励磁就绪输出控制
励磁就绪控制作为允许同步电动机启动的必要条件,连接至同步电动机启动柜的合闸回路中。当系统满足如下条件时,励磁就绪信号才会输出
a励磁工况为工作;
b空气开关位置为合闸;
c励磁系统各项监测正常
d励磁系统无故障
4.2.5 风机控制
在励磁控制器投入励磁的同时,风机控制继电器即吸合启动风机。同时励磁控制器对风机进行监视,当风机出现故障时,励磁故障继电器吸合直到风机故障排出并人为按下信号复位按钮,励磁故障解除。
因风机故障短时间内并不影响系统正常运行,所以风机故障时并不会导致故障停机信号输出。
4.2.6 励磁状态输出
在电机启动结束,系统投入励磁5秒后,系统进入到稳态,此时励磁状态继电器吸合。此信号可用于带有气动离合器的磨机系统,或其他带有负载分合装置的自动投切控制,也可串入离合器的合闸回路,作为允许合离合器的必要条件。
4.2.7 外部强励控制
此功能用于在同步电动机启动结束后,对同步电动机突加负载,如带有离合器的磨机系统离合器的合闸操作。由于离合器抱闸瞬间,磨机的启动力矩较大,超过了同步电动机的力矩,外部强励功能在离合器抱闸的瞬间投入强励,使同步电动机输出更大力矩将磨机拖入同步运行。该信号可取自离合器的状态输出接点。为防止强励造成励磁绕组过热,两次外部强励的间隔为十分钟,若在十分钟之内则控制器不对外部强励信号相应。
4.2.8 低电压强励控制
当电网电压跌落至控制器配置的低电压整定值时,如控制器参数配置为低电压强励使能,则控制器启动强励环节,并且按照1.2倍额定励磁输出;最大的强励输出时间为起车强励时间的2倍。持续低电压或两次低电压时间小于十分钟则不会重复强励。
4.2.9 同步电动机的失步及再整步控制
a失磁失步控制
在同步电动机运行过程中,励磁控制器对同步电动机进行失磁失步检测,当同步电动机的励磁电流低于励磁电流下限设定值并且转子感应电流交变频率高于5HZ时判定为失磁失步。当出现失磁失步情况时控制器故障停机继电器吸合使系统停机。
b带励失步及再整步
在同步电动机运行过程中,励磁控制器对同步电动机运行时的功率因数角进行分析来判定带励失步的发生,当出现带励失步情况时,若设定为动作于停机,则控制器故障停机继电器吸合使系统停机。若设定为动作与再整步,则控制器重新投入到滑差检测环节,在滑差达到设定的投励滑差值并且捕捉到准角后,控制器按照1.2倍额定励磁投入励磁,投入强励的时间为起车强励时间的两倍。
同步电动机的失步再整步过程中,励磁绕组、启动绕组温升很高,频繁的启动将会造成损坏,所以在每次两次失步在整步的间隔时间为十分钟,如果在十分钟内又发生了失步情况,则直接跳闸。
4.2.10 运行方式的控制
通过励磁电流的调节,可以改变同步电动机的运行状态。同步电动机运行在欠励状态,从电网吸收滞后的无功电流;运行在过励状态,从电网吸收超前的无功功率。通过对励磁电流的控制可以提高电网的功率因数。S300微机控制器配置了三种运行方式:自动模式(双闭环,内环为励磁电流调节,外环为功率因数调节)、手动模式(恒励磁电流调节)、开环模式(恒可控硅触发角)。
a自动模式
自动模式为励磁系统正常的工作模式,励磁控制器通过内环励磁电流调节器来维持系统的功率因数恒定,减小了由于电网或负载突然波动对电机稳态运行的影响,并且可以向电网输出一定比例的滞后的无功功率,从而改善电网的功率因数。
为保证系统运行的稳定性,在发生母线PT互感器断线或定子电流小于额定的5%时,系统转入到强制手动模式(即暂时转入手动模式待PT断线或定子电流恢复后回到自动模式)。
在励磁控制器无法按照给定的功率因数来正常调节系统的功率因数时,系统转入到手动模式。
b手动模式
在手动模式下,控制器按恒励磁电流调节,保持励磁电流的实际
输出值与给定值相等。
系统正常运行时,控制器工作在自动模式,手动模式作为备用。 当电机异步启动,失磁及带励失步再整步,以及过励保护、失磁
保护等控制器自动转入手动模式。
c开环模式
开环模式为保守的工作模式,只有在手动模式无法进行励磁调节时自动投入,在该模式下所有的励磁限制、调节功能全部退出,只维持励磁系统最基本的运行。
4.2.11 增磁减磁按钮的控制
因励磁工作模式有自动、手动和开环三种模式,所以在上述三种模式下,增磁减磁按钮分别对应不同的操作。
a在自动模式下,增磁减磁按钮调节的为功率因数的给定值;
b在手动模式下,增磁减磁按钮调节的为励磁电流的给定值;
c在开环模式下,增磁减磁按钮调节的为可控硅的触发角度;
增磁减磁按钮设有按钮粘连检测,当连续按下时间超过5秒时,报警继电器吸合,中央处理器不再响应增磁减磁按钮信号。当增磁减磁按钮释放后,自动恢复到正常状态。
4.2.12反时限最大励磁电流限制
为了防止同步电动机励磁绕组过热损坏绝缘,最大励磁电流限制采用反时限特性,模拟励磁绕组的发热模型,计算公式如下:
其中:
K-为常数,其量纲为时间,这里通过控制器参数配置里的最大强励倍数和对应的时限计算出K值
I-为故障电流,这里取实际的励磁电流
Ip-为保护启动电流,这里取电机的额定电流
r-为常数,这里取2
t-为保护动作时间
其允许的过励时间是随电机励磁大小而变化的,如下图所示曲线。
控制器按照参数配置里的最大强励倍数和对应的时限计算励磁绕组允许的热容量,当电机出现过励情况时对励磁绕组的热容量进行累计,并产生如下动作
①当实际励磁电流超过额定励磁电流时,控制器发出报警提示。如在短时间内励磁电流回归到正常值,报警自动解除
②当累计热容量达到1/2K时,控制器工作模式由自动模式转入手动模式,并且将励磁电流限制在0.9倍额定值。
③当累计热容量达到K时,则控制器立即作用于停机。
4.2.13其它故障监测
①控制器内部电源故障监测——动作于跳闸停机
②空气开关过流故障监测——动作于跳闸停机
③快速熔断器故障监测——动作于跳闸停机
④启动回路误开通监测——动作与跳闸停机
⑤整流桥缺相监测——动作于跳闸停机
⑥触发脉冲丢失监测——动作于跳闸停机
⑦空气开关电机运行状态下分闸——动作于跳闸停机
⑧励磁输出开了监测——动作于跳闸停机
⑨启动柜主断路器跳闸拒动监测——动作于跳闸停机
⑩励磁系统未就绪启动柜主断路器合闸监测——动作于跳闸停机
PT断路监测——动作于故障报警 风机故障监测——动作于故障报警 增磁减磁按钮接点粘连——动作于故障报警4.2.14防止误操作控制
①在就地操作模式下,除就地——远程按钮切换有效外其它操作均无效。
②在远程操作模式下,除就地——远程按钮切换有效外其它操作均无效。
③工作模式与调试模式的切换只有在装置未投励,主断路器断开的情况下有效。
④在工作模式时,电机启动过程中按下投励按钮,则动作于手动投励。灭磁按钮在主断路器闭合的情况下无效。
⑤空开分合闸操作只有在装置未投励,主断路器断开的情况下有效。
数控机床电压异常能引起什么故障?
多年的数控机床维修经验证实,在故障总数中,由电源引发的故障占了相当大的比例。数控机床电源故障中很多属于机床用户有能力自行排除的器件损坏故障,其领域已属于片级修理[1]。2 数控机床电源把数控机床所使用的电源分成了三级,从一次电源到三次电源,依次为派生关系,其造成的故障频次和难度也依次增加。具体分级如下:(1)一次电源。一次电源即由车间电网供给的三相380 V电源,它是数控机床工作的总能源供给。要求该电源要稳定,一般电压波动范围要控制在5% ~10% ,并且要无高频干扰。(2)二次电源。由三相电源经变压器从一次电源派生。其用途主要有:1)派生的单相交流220 V、交流1l0 V,供电给CNC单元及显示器单元,做为热交换器、机床控制回路和开关电源的电源。2)有的数控机床派生的三相低电压做直流24 V整流桥块的电源。有的数控机床由三相变压器产生三相交流220 V,供给伺服放大器电源组件作为其工作电源。(3)三次电源。三次电源是数控机床使用的各种直流电源,它是由二次电源转化来的。主要有这样几种:1)由伺服放大器电源组件提供的直流电压、由伺服放大器组件逆变成频率和电压幅值可变的三相交流电以控制交流伺服电动机的转速。2)整流桥块提供的交流24 V,作为液压系统电磁阀,电动机闸电磁铁电源和伺服放大器单元的“ready”和“controller enable”信号源。3)由开关电源或DC/DC电源模块提供的低压直流电压,这些电压有:+5 V、±12 V、±15 V,分别做为测量光栅、数控单元和伺服单元电气板的电源。3 数控机床电源回路使用的器件数控机床从一次电源到三次电源使用的器件分别有:(1)车间配电装置,一般包括:与车间电网连接的三相交流稳压器和断路器(又称空气开关,或闸刀开关)。(2)机床元器件,包括:滤波器、电抗器、三相交流变压器、断路器、整流器、熔断器、伺服电源组件、DC/DC模块和开关电源。4 电源故障实例分析(1)电网波动过大PLC不工作。表现为PLC无输出。先查输入信号(电源信号、干扰信号、指令信号与反馈信号)。例如,采用SINUMERIK 3G-4B系统的数控车床,其内置式PLC无法工作。采用观察法,先用示波器检查电网电压波形,发现电网波动过大,欠压噪声跳变持续时间>1s(外因)。由于该机床处于调试阶段,电源系统内组件故障应当排除在外,由内部抗电网干扰措施(滤波、隔离与稳压)可知,常规的电源系统已无法隔断或滤去持续时间过长的电网欠压噪声,这是抗电网措施不足所致(内因),导致PLC不能获得正常电源输入而无法工作。在系统电源输入端加入一个交流稳压器,PLC工作正常。(2)电源故障。某双工位数控车床,每个工位都由单独的NC系统控制,NC系统采用西门子公司的SINUMERIK810/T系统。右工位的NC系统经常在零件自动加工中断电停机,重新启动系统后,NC系统仍可自动工作。检查24 V供电电源负载,并无短路问题。对图样进行分析,两台NC系统,共用一个24 V整流电源。引起这个故障可能有两个原因:1)供电质量不高,电源波动,而出故障的NC系统对电源的要求较灵敏。2)NC系统本身的问题,系统不稳定。根据这个判断,首先对24V电源电压进行监视,发现其电压幅值较低,只有21V左右。经观察发现,在出故障的瞬间,这个电压向下浮动,而NC系统断电后,电压马上回升到22V左右。故障一般都发生在主轴启动时,其原因可能是24V整流变压器有问题,容量不够,或匝间短路,使整流电压偏低,电网电压波动,影响NC系统的正常工作。为确定这个故障的原因,用交流稳压电源将交流380V供电电压提高到400 V,这个故障就没有再出现。为此更换24V整流变压器,问题彻底解决。(3)一台VDF.BOEHRINGER公司(德国)生产的PNE480L数控车床,合上主开关启动数控系统时,在显示面板上除READY(准备好)灯不亮外,其余指示灯全亮。该机数控系统为西门子SYSTEM5T系统。因为故障发生于开机的瞬间, 因此应检查开机清零信号RESET是否异常。又因为主板上的DP6灯亮,而且DP6是监视有关直流电源的,因此需要对驱动DP6的相关电路及有关直流电源进行检查。其步骤如下:因为DP6灯亮属报警显示,故首先对DP6的相关电路进行检查。经检查,确认驱动DP6的双稳态触发器LA10逻辑状态不对,已损坏。用新件更换后,虽然DP6指示灯不亮了,但故障现象仍然存在,数控箱还是不能启动。检查*RESET信号及数控箱内各连接器的连接情况良好,但*RESET信号不正常,并发现与其相关的A38位置上的LA01与非门电路逻辑关系不正确。于是对各直流电流进行检查。检查±15V、±5V、±12V、+24V,发现电压为-5V~4.0V,误差超过±5%。进一步检查,发现该电路整流桥后有一滤波大电容C19的焊脚处印制电路板铜箔断裂。将其焊好后,电压正常,LA01电路逻辑关系及*RESET信号正确,故障排除,数控箱能正常启动。(4)返回参考点异常。这是由于返回参考点时没有满足“必须沿返回参考点方向,并距参考点不能过近(128个脉冲以上)及返回参考点进度不能过低”的条件。对这类故障的处理步骤是[2,3]:1)距参考点位置>128个脉冲,返回参考点过程中。①电动机转了不到1转(即没有接收到1转信号),此时首先变更返回时的开始位置,在位置偏差量>128个脉冲的状态下,在返回参考点方向上进行1转以上的快速进给,检测是否输入过1转信号。②电动机转了1转以上,这是使用了分离型的脉冲编码器。此时,检查位置返回时脉冲编码器的1转信号是否输入到了轴卡中,如果是,则是轴卡不良;如果未输入,则先检查编码器用的电源电压是否偏低(允许电压波动在0.2V以内),否则是脉冲编码器不良。2)距参考点位置<128个脉冲。①检查进给速度指令值,快速进给倍率信号,返回参考点减速信号及外部减速信号是否正常。②变更返回时的开始位置,使其位置偏差量超过128个脉冲。③返回参考点速度过低。速度必须为位置偏差量超过128个脉冲的速度,如果速度过低,电动机1转信号散乱,不可能进行正确的位置检测。(5)某加工中心,配置F-0M系统,在自动运转时突然出现刀库、工作台同时旋转。经复位、调整刀库、工作台后工作正常。但在断电重新启动机床时,CRT上出现410号伺服报警。查L/M轴伺服PRDY、VRDY两指示灯均亮;进给轴伺服电源AC100V、AC18V正常;x、y、z伺服单元上的PRDY指示灯均不亮,三个MCC也未吸合;测量其上电压发现24V、±15V异常;轴伺服单元上电源熔断器电阻太大,经更换后,直流电压恢复正常,重新运行机床,401号报警消失。(6)故障现象:某公司产VF2型立式铣加工中心。机床运行一年零七个月以后,加工中出现161号报警(x- axis over current or drive fault),机床停止运行。使用“RESET”键报警可以清除,机床可恢复运行。此故障现象偶尔发生,机床带病运行两年后,故障发生频次增加,而且出现故障转移现象:即使用复位键清除161号报警时,报警信息转报162号(Y-axis over current or drive fault),如果再次清除,则再次转报z轴,以此类推。机床已无法维持运行。故障分析及检查:根据故障报警信息在几伺服轴之间转移现象,不难看出故障发生在与各伺服轴都相关的公共环节,也就是说,是数控单元的“位置控制板”或伺服单元的电源组件出现了故障。位控板是数控单元组件之一,根据经验分析,数控单元电气板出现故障的概率很低,所以分析检查伺服电源组件是比较可行的排故切入点。检查发现此机床伺服电源分成两部分,其中输出低压直流±12 V两路的是开关电源。测量结果分别是:+11.73 V,-11.98 V。分析此结果,正电压输出低了0.27 V,电压降低幅度2.3%。由于缺乏量化概念,在暂时找不到其它故障源的情况下,假定此开关电源有故障。故障排除:为验证输出电压偏差是造成机床故障的根源,用一台WYJ型双路晶体管直流稳压器替代原电源,将两路输出电压调节对称,幅值调到12V,开机后,机床报警消失。在接下来的20个工作日的考验运行中,故障不再复现。完全证实了故障是由于此伺服电源组件损坏引起的。理论分析[4]:运算放大器和比较器,有些用单电源供电,有些用双电源供电,用双电源的运放要求正负供电对称,其差值一般不能大于0.2 V(具有调节功能的运放除外),否则将无法正常工作。而此故障电源,两路输出电压相差了0.25 V,超出了误差允许范围,这是故障发生的根本原因。
大型风力发电机的外型尺寸
1500KW风轮直径77m,塔高65m。2500KW和3000KW风轮90m,塔高100m。1500KW风力发电机是我国的主流机型,风轮直径大多是77米左右,也有70米、82米、87米的。塔筒高度65米、70米。
2500KW和3000KW目前不是主流机型,但是已经有了实际应用。华锐东海大桥的34台3MW风机风轮直径90米,塔筒高90米。金风官厅水库安装了2.5MW样机,高度100米,风轮直径90米。
风力发电机是将风能转换为机械功,机械功带动转子旋转,最终输出交流电的电力设备。风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。
扩展资料:
根据定桨矩失速型风机和变速恒频变桨矩风机的特点,国内目前装机的电机一般分为二类:
1、异步型
(1)笼型异步发电机;功率为600/125kW 750kW 800kW 12500kW定子向电网输送不同功率的50Hz交流电;
(2)绕线式双馈异步发电机;功率为1500kW定子向电网输送50Hz交流电,转子由变频器控制,向电网间接输送 有功或无功功率。
2、同步型
(1)永磁同步发电机;功率为750kW 1200kW 1500kW 由永磁体产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电
(2)电励磁同步发电机;由外接到转子上的直流电流产生磁场,定子输出经全功率整流逆变后向电网输送50Hz交流电
根据叶片形式的不同,现有风力发电机分为以下两类:
1、水平轴:世界上目前利用最多的形式,功率最大5MW左右。
2、垂直轴:21世纪初由中国、日本、欧洲几乎同时发明的一种新型风力发电机,有别于最早的垂直轴风力发电机(达里厄型),效率高于水平轴风力发电机,无噪音和转向机构,维护简单。已成为欧美市场中小型风力发电机的首选。
参考资料:
长虹液晶电视维修故障
随着科技的不断进步,电视机进入每家每户这种事情不再是梦想了。目前市场的电视机基本都是液晶电视机居多,以前的巨无霸电视机也渐渐的退出我们的视线了,而电视机作为普通家电,我们或多或少都会遇到这样那样的问题,如果是在维修期内还好,可以直接送去销售点进行维修,如果过了保修期,我们就头疼了,下面,小编整理了一下,长虹液晶电视机常见问题的维修实例。想知详情如何,下文为您解答。长虹液晶液晶电视常见问题维修实例
一、黑屏(电源指示灯亮)
此类故障大多出现在这两个方面:
1、检查逆变器是否工作,如灯管不亮,首先检查控制信号STANDBY是否正常,然后检查逆变器电源+12V、5V是否正常,无电源一般情况下是+12V保险电阻开路,更换即可,如电源也正常,灯管仍不亮,则需要更换逆变器板。
2、在灯管亮的前提下,需检查液晶屏工作电源VCCPANEL(3.3V)是否正常,如不正常,则检查液晶屏电源控制信号BLON(正常应为高电平),如不正常,需检查CPU工作是否正常,一般情况下,需更换CPU,如控制信号正常仍无3.3V电源,需更换SI9430DY(U15)。
二、白屏(整个屏幕呈现很亮的白光栅)
1、首先检查液晶屏与信号板之间的连接线(PJ1、PJ2)是否接触不良,如确属接触不良,重新将接插件插好即可。
2、另一种常见情况是A/D变换器工作电源PVDD(3.3V)下降甚至为0V,AD9884(U4)不工作,无数字RGB信号输出,液晶屏信号电极无工作电压,相当于液晶盒不加电,由显示器原理可知:液晶屏处于透光状态,所以整个屏幕呈现很亮的白光栅,经检查为L11电感早期失效,阻值增大,致使PVDD电源下降。
三、屏幕偏色
如屏幕出现轻微偏色,则首先进入工厂模式(拨动电源开关关闭显示器,然后同时按住“”键和“select”键,再开启电源开关),此时进入刷屏状态,发现屏上出现不对称的干扰细条纹,此时需检查24C16(U9),即使测量工作电压正常,也必须予以更换,一般情况下更换即可修复。
四、屏幕缺色
此种情况下一般为A/D变换器无模拟的R或G或B信号输入,经检查为L3或L4或L5早期失效,阻值增大或开路,从而导致无基色信号输入。建议更换。
五、红屏
如整个屏幕出现红屏,需检查帧存储器U2、U3,即使存储器电源正常,也必须考虑更换,一般情况下需更换U2即可。
六、上出现“信号超出范围”
此种情况首先应排除显示器接收的信号不标准或者超出显示器
支持的显示格式这两种情况,如为显示器的故障,则必须检查模拟的阳光电子学校维修专家认为:行场同步信号,一般情况下为R39、R40早期失效,致使阻值增大或开路,从而引起无阳光电子学校维修专家认为:行场同步信号输入A/D变换器。
七.长虹液晶LT3288电视,故障现象,音箱自动加到100,长虹售后诊断为主板失控导致,要换主板,主板信息:ZB板,屏厂家:三星;适用机型:LT3288。
以上就是长虹液晶电视机的几个常见问题,怎么维修它,小编也在上面说了。具体操作过程,小编也不一一列举了,这个就请各位朋友们慢慢摸索吧。如果自己无法维修的话,小编建议您去维修中心寻找一下帮助,要知道,尽快解决液晶电视机的问题才是最关键的。这样就不会错过朋友们你最爱的电视剧、新闻这些节目了,当然了,你可以选择在电脑上看,但是电脑屏幕没有电视屏幕大,观看得效果可能有点大打折扣。
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:/yezhu/zxbj-cszy.phpto8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~
长虹液晶电视维修方法大全
长虹电视机,相信大家都很熟悉,长虹电视是指长虹旗下生产的电视。长虹作为国内知名彩电企业之一,不少人在购买液晶电视的时候,都会选择长虹这个牌子。家里的长虹液晶电视使用的过程中,可能会有损坏的情况,这时候要能及时进行长虹液晶电视维修。今天就让小编带您一起去了解一下长虹液晶电视维修方法大全吧。
长虹液晶电视维修方法大全
一、白屏(整个屏幕呈现很亮的白光栅)
1、首先检查信号板和液晶屏间的连接线(PJ1、PJ2)有没有接触不良,如果接触不良,重新将接插件插好即可。
2、还有可能就是A/D变换器工作电源PVDD(3.3V)下降甚至到0伏,AD9884(U4)不工作,无数字RGB信号输出,液晶屏信号电极无工作电压,相当于液晶盒不加电,由显示器原理可知:液晶屏处于透光状态,所以整个屏幕呈现很亮的白光栅,经检查为L11电感早期失效,阻值增大,致使PVDD电源下降。
二、黑屏(电源指示灯亮)
1、检查逆变器能否工作,如灯管不亮,首先检查控制信号STANDBY正不正常,然后检查逆变器电源+12伏、5伏是否正常,无电源一般情况下是+12伏保险电阻开路,更换就可以,如果电源也正常,灯管仍不亮,那就需要更换逆变器板。
2、在灯管亮的前提下,需检查液晶屏工作电源VCCPANEL(3.3伏)是不是正常,如果不正常,则检查液晶屏电源控制信号BLON,正常就是高电平),如果不正常,需检查CPU工作,一般情况下,需更换CPU,如果控制信号正常仍无3.3伏电源,需更换SI9430DY(U15)。
三、屏幕缺色
一般是A/D变换器无模拟的G或R或B信号输入,经检查为L3或L4或L5早期失效,阻值增大或开路,从而导致无基色信号输入。
四、屏幕偏色
如屏幕出现轻微偏色,则首先进入工厂模式(拨动电源开关关闭显示器,然后同时按住键和select键,再开启电源开关),此时进入刷屏状态,发现屏上出现不对称的干扰细条纹,此时需检查24C16(U9),即使测量工作电压正常,也必须予以更换,一般情况下更换即可修复。
五、红屏
如整个屏幕出现红屏,需检查帧存储器U2、U3,即使存储器电源正常,也必须考虑更换,一般情况下需更换U2即可。
六、长虹液晶LT3288电视
故障现象,音箱自动加到100,长虹售后诊断为主板失控导致,要换主板,主板信息:ZB板,屏厂家:三星;适用机型:LT3288。
看完这篇关于长虹液晶电视维修方法大全的文章后,希望能够给您的工作和学习带来一定的帮助。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467