Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器失压保护

发布时间:2024-07-24 14:30:16 人气:

并网逆变器如果电网停电怎么处理呢

       在电网的主电停电时候,逆变器检测到的市电的电压频率存在异常时候,会反孤岛运行,自动切断输出开关。没有电压和电流输出。逆变器只存在电压,但电压会被输出开关前截止,没有电流产生。不存在过流。就算逆变器功率够大,也不能给其他用户供电。因为如果市电出现异常或者停电,逆变器继续送电会给市电电网维护人员以及使用用户带来极大的危险。主电网一般是看做无穷大的电能。在逆变器检测到电网电压频率谐波等正常时候才重新开始并网输出。

变频器逆变器损坏为什么会跳过流故障其检测电路的原理是怎样的

       1.1 主回路常见故障分析

       主回路主要由三相或单相整流桥、平滑电容器、滤波电容器、IPM逆变桥、限流电阻、接触器等元件组成。其中许多常见故障是由电解电容引起。电解电容的寿命主要由加在其两端的直流电压和内部温度所决定,在回路设计时已经选定了电容器的型号,所以内部的温度对电解电容器的寿命起决定作用。电解电容器会直接影响到变频器的使用寿命,一般温度每上升10 ℃,寿命减半。因此一方面在安装时要考虑适当的环境温度,另一方面可以采取措施减少脉动电流。采用改善功率因数的交流或直流电抗器可以减少脉动电流,从而延长电解电容器的寿命。

       在电容器维护时,通常以比较轻易测量的静电容量来判定电解电容器的劣化情况,当静电容量低于额定值的80%,绝缘阻抗在5 MΩ以下时,应考虑更换电解电容器。

       1.2 主回路典型故障分析

       故障现象:变频器在加速、减速或正常运行时出现过电流跳闸。

       首先应区分是由于负载原因,还是变频器的原因引起的。假如是变频器的故障,可通过历史记录查询在跳闸时的电流,超过了变频器的额定电流或电子热继电器的设定值,而三相电压和电流是平衡的,则应考虑是否有过载或突变,如电机堵转等。在负载惯性较大时,可适当延长加速时间,此过程对变频器本身并无损坏。若跳闸时的电流,在变频器的额定电流或在电子热继电器的设定范围内,可判定是IPM模块或相关部分发生故障。首先可以通过测量变频器的主回路输出端子U、V、W, 分别与直流侧的P、N端子之间的正反向电阻,来判定IPM模块是否损坏。如模块未损坏,则是驱动电路出了故障。假如减速时IPM模块过流或变频器对地短路跳闸,一般是逆变器的上半桥的模块或其驱动电路故障;而加速时IPM模块过流,则是下半桥的模块或其驱动电路部分故障,发生这些故障的原因,多是由于外部灰尘进入变频器内部或环境潮湿引起。

       1.3 控制回路故障分析

       控制回路影响变频器寿命的是电源部分,是平滑电容器和IPM电路板中的缓冲电容器,其原理与前述相同,但这里的电容器中通过的脉动电流,是基本不受主回路负载影响的定值,故其寿命主要由温度和通电时间决定。由于电容器都焊接在电路板上,通过测量静电容量来判定劣化情况比较困难,一般根据电容器环境温度以及使用时间,来推算是否接近其使用寿命。

       电源电路板给控制回路、IPM驱动电路和表面操作显示板以及风扇等提供电源,这些电源一般都是从主电路输出的直流电压,通过开关电源再分别整流而得到的。因此,某一路电源短路,除了本路的整流电路受损外,还可能影响其他部分的电源,如由于误操作而使控制电源与公共接地短接,致使电源电路板上开关电源部分损坏,风扇电源的短路导致其他电源断电等。一般通过观察电源电路板就比较轻易发现。

       逻辑控制电路板是变频器的核心,它集中了CPU、MPU、RAM、EEPROM等大规模集成电路,具有很高的可靠性,本身出现故障的概率很小,但有时会因开机而使全部控制端子同时闭合,导致变频器出现EEPROM故障,这只要对EEPROM重新复位就可以了。

       IPM电路板包含驱动和缓冲电路,以及过电压、缺相等保护电路。从逻辑控制板来的PWM信号,通过光耦合将电压驱动信号输入IPM模块,因而在检测模快的同时,还应测量IPM模块上的光耦。

       1.4 冷却系统

       冷却系统主要包括散热片和冷却风扇。其中冷却风扇寿命较短,临近使用寿命时,风扇产生震动,噪声增大最后停转,变频器出现IPM过热跳闸。冷却风扇的寿命受限于轴承,大约为10000~35000 h。当变频器连续运转时,需要2~3年更换一次风扇或轴承。为了延长风扇的寿命,一些产品的风扇只在变频器运转时而不是电源开启时运行。

       1.5 外部的电磁感应干扰

       假如变频器四周存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。减少噪声干扰的具体方法有:变频器四周所有继电器、接触器的控制线圈上,加装防止冲击电压的吸收装置,如RC浪涌吸收器,其接线不能超过20 cm;尽量缩短控制回路的配线距离,并使其与主回路分离;变频器控制回路配线绞合节距离应在15 mm以上,与主回路保持10 cm以上的间距;变频器距离电动机很远时(超过100 m),这时一方面可加大导线截面面积,保证线路压降在2%以内,同时应加装变频器输出电抗器,用来补偿因长距离导线产生的分布电容的充电电流。变频器接地端子应按规定进行接地,必须在专用接地点可靠接地,不能同电焊、动力接地混用;变频器输入端安装无线电噪声滤波器,减少输入高次谐波,从而可降低从电源线到电子设备的噪声影响;同时在变频器的输出端也安装无线电噪声滤波器,以降低其输出端的线路噪声。

       1.6 安装环境

       变频器属于电子器件装置,对安装环境要求比较严格,在其说明书中有具体安装使用环境的要求。在非凡情况下,若确实无法满足这些要求,必须尽量采用相应抑制措施:振动是对电子器件造成机械损伤的主要原因,对于振动冲击较大的场合,应采用橡胶等避振措施;潮湿、腐蚀性气体及尘埃等将造成电子器件锈蚀、接触不良、绝缘降低而形成短路,作为防范措施,应对控制板进行防腐防尘处理,并采用封闭式结构;温度是影响电子器件寿命及可靠性的重要因素,非凡是半导体器件,应根据装置要求的环境条件安装空调或避免日光直射。

       除上述几点外,定期检查变频器的空气滤清器及冷却风扇也是非常必要的。对于非凡的高寒场合,为防止微处理器因温度过低不能正常工作,应采取设置空气加热器等必要措施。

       1.7 电源异常

       电源异常大致分以下3种,即缺相、低电压、停电,有时也出现它们的混合形式。这些异常现象的主要原因,多半是输电线路因风、雪、雷击造成的,有时也因为同一供电系统内出现对地短路及相间短路。而雷击因地域和季节有很大差异。除电压波动外,有些电网或自行发电的单位,也会出现频率波动,并且这些现象有时在短时间内重复出现,为保证设备的正常运行,对变频器供电电源也提出相应要求。

       假如四周有直接启动的电动机和电磁炉等设备,为防止这些设备投入时造成的电压降低,其电源应和变频器的电源分离,减小相互影响。

       对于要求瞬时停电后仍能继续运行的设备,除选择合适价格的变频器外,还应预先考虑电机负载的降速比例。当变频器和外部控制回路都采用瞬间停电补偿方式时,失压回复后,通过测速电机测速来防止在加速中的过电流。

       对于要求必须连续运行的设备,应对变频器加装自动切换的不停电电源装置。像带有二极管输入及使用单相控制电源的变频器,虽然在缺相状态,但也能继续工作,但整流器中个别器件电流过大,及电容器的脉冲电流过大,若长期运行将对变频器的寿命及可靠性造成不良影响,应及早检查处理。

       1.8 雷击、感应雷电

       雷击或感应雷击形成的冲击电压,有时也会造成变频器的损坏。此外,当电源系统一次侧带有真空断路器时,短路开闭会产生较高的冲击电压。为防止因冲击电压造成过电压损坏,通常需要在变频器的输入端加压敏电阻等吸收器件。真空断路器应增加RC浪涌吸收器。若变压器一次侧有真空断路器,应在控制时序上,保证真空断路器动作前先将变频器断开。

       2 变频器本身的故障自诊断及预防功能

       老型号的晶体管变频器主要有以下缺点:轻易跳闸、不轻易再启动、过负载能力低。由于IGBT及CPU的迅速发展,变频器内部增加了完善的自诊断及故障防范功能,大幅度提高了变频器的可靠性。

       假如使用矢量控制变频器中的“全领域自动转矩补偿功能”,其中的“启动转矩不足”、“环境条件变化造成出力下降”等故障原因,将得到很好的克服。该功能是利用变频器内部的微型计算机的高速运算,计算出当前时刻所需要的转矩,迅速对输出电压进行修正和补偿,以抵消因外部条件变化而造成的变频器输出转矩变化。

       此外,由于变频器的软件开发更加完善,可以预先在变频器的内部设置各种故障防止措施,并使故障化解后,仍能保持继续运行,例如:对自由停车过程中的电机进行再启动;对内部故障自动复位并保持连续运行;负载转矩过大时,能自动调整运行曲线,能够对机械系统的异常转矩进行检测。

变频器 可以防止瞬间压降断电么

       电压波动导致变频器低电压保护动作的分析一、目前所面临的问题随着电力[wiki]电子[/wiki]技术的发展,变频器已经逐步代替传统的调速控制装置而得到广泛应用,但由于变频器的某些特性,导致变频器在使用中产生了新的问题—变频器低压跳闸。主要体现在:1,大型负载的起动2,自然[wiki]环境[/wiki]的影响3,干扰举个例子来说,某电厂给粉机上所使用的变频器,因雷击造成电网波动,导致变频器低电压保护动作,从而引发的MFT动作,造成了非计划停机的严重事故。许多电厂和[wiki]化工[/wiki]厂都存在这种隐患,因为发生的次数和不确定性,未能引起电气人员的重视。二、从变频器入手技术关键:首先有必要介绍一下变频器,变频器是由整流器和逆变器两部分组成。变频器低电压其实指其中间直流回路低电压(即逆变器输入电压过低),而变频器都具有过压、失压和瞬间停电的保护功能。如果变频器的逆变器件为GTR时,一旦失压或停电,控制电路将停止向驱动电路输出信号,使驱动电路和GTR全部停止工作,电动机将处于自由制动状态。逆变器件为IGBT时,在失压或停电后,将允许变频器继续工作一个短时间td,若失压或停电时间to<td,变频器将平稳过度运行;若失压或停电时间to>td,变频器自我保护停止运行。一般td都在15~25ms,只要电源“晃电”较为强烈,to都在几秒钟以上,变频器自我保护停止运行,使电动机停止运行。通过对变频器的分析,其实解决好变频器的中间直流部分,就可以从根本上去解决。例如扬子石化热电厂,华电淄博等一些行业就用此方法从根本上解决了这种隐患。三、难点1,一路稳定的直流电源,变频器的中间直流部分为513-540v2,一套可靠的控制系统,能断能投,断投都不影响正常工作(这里指的投是说当系统出现晃电时,投上去,从而保证变频器度过晃电期:断下来,晃电期结束后,系统要自动退下来,投和断对原有的正常系统没有任何影响)3,可靠性,电厂化工等场所的安全级别较高,所有的元件,包括一些现场的连锁都必须要保证可靠度和可靠用。以上是我对这种问题的看法,也亲身参与了华电淄博,扬子热电,还有一些石化,半导体的一些类似问题的解决。如有不同意见,请多交流。

有源逆电路工作时,若电网电压突然消失,将会对电路有什么影响

       这个就是所称的孤岛效应

       “孤岛”是指公共电网停止供电后,由于分布式发电的存在(与电网相连并输送电能),使电网停电区的部分线路仍维持带电状态,形成自给电力供应的孤岛。在孤岛状态下电力公司失去对线路电压、频率的控制,会带来一系列的安全隐患及事故纠纷,危害人身安全,造成设备损害。因而,电力公司要求并网的分布式发电系统需要反孤岛检测技术及时检测出孤岛并将分布式发电装置与公共电网断离。

       1.2孤岛效应的检测

       我国于2005年11月发布相关国家标准,即光伏系统并网的技术要求,该标准分别从2006年1月1日和2006年2月1日起实施。标准中对孤岛检测提出的要求包括:电网失压时,防孤岛效应保护必须在2秒内完成,将光伏系统与电网断开;应至少采用主动与被动孤岛检测方法各一种。

       孤岛效应检测方法主要分为被动式和主动式两种。被动式孤岛检测方法通过检测逆变器的输出是否偏离并网标准规定的范围(如电压、频率或相位),判断孤岛效应是否发生。其工作原理简单,实现容易,但在逆变器输出功率与局部负载功率平衡时无法检测出孤岛效应的发生。主动式孤岛检测方法是指通过控制逆变器,使其输出功率、频率或相位存在一定的扰动。电网正常工作时,由于电网的平衡作用,这些扰动检测不到。一旦电网出现故障,逆变器输出的扰动将快速累积并超出并网标准允许的范围,从而触发孤岛效应的保护电路。该方法检测精度高,检测盲区(Non—deteetionZone,NDZ)小,但是控制较复杂且降低了逆变器输出电能的质量。

       被动方法:

       1、电压、频率检测

       光伏并网发电系统并网运行过程中,除了要防还要保证逆变器输出电压与电网同步,因此对电不断进行检测,以防止出现过压、欠压、过频或电压、频率进行检测的被动式孤岛检测方法只需进行判断,无需增加检测电路。该方法最大的缺率与负载功率平衡时,电网断电后逆变器输出端变,从而出现孤岛检测的漏判。

       2、相位检测

       逆变器输出电压相位检测方法原理与电压、电网出现故障时,光伏发电系统逆变器所带的负导致电网故障前后逆变器输出电压和输出电流相据相位的变化情况即可判断电网是否出现故障。由于电网中感性负载较普遍,因此该方法在果优于电压、频率检测方法。但是当负载为阻性负载阻抗特性保持不变时,该方法就失去了孤岛。

       3、谐波检测

       谐波检测方法是指当电网出现故障停止工作的平衡作用,光伏发电系统输出电流在经过变压会产生大量的谐波,根据谐波的变化情况便可判状态。实验研究及实际应用表明:该方法具有良由于目前电网中存在大量的非线性设备,谐波变定一个统一的用于孤岛效应检测的谐波标准。

       主动检测:

       有源频率漂移法的工作原理如下:

       ①系统通过控制逆变器使其输出电压的频率与电网电压的频率存在一定的误差△f(△f在并网标准允许范围内);

       ②当电网正常工作时,由于锁相环电路的矫正作用,逆变器输出电压频率与电网电压频率的误差△f始终在一个较小的范围内;

       ③当电网出现故障时,逆变器输出端电压的频率加v将发生变化,在逆变器下一个工频周期内,系统将以加v为基准,然后加上设定的频率误差△f去控制逆变器输出电压的频率,从而导致逆变器输出电压的频率与电网电压的频率误差进一步增加。该过程不断重复,直至逆变器输出电压的频率超出并网标准的规定,从而触发孤岛效应的保护电路动作,切断逆变器与电网的连接。

       有源频率扰动法中频率扰动波形如图所示。图中曲线为一个工频周期的电流波形及其扰动控制信号,图的纵坐标为电流的标么值,横坐标为时间。设定有源频率扰动法中电压为零的时段为t,它与基波电压半个周期几rl、的比值称为扰动信号(chopingfraction,cf),

       解决措施就是在检测到电网电压为0而且两个周期的频率不存在时,立即关闭功率部分(大电流),而后关闭输出信号。再不断检测电网电压以及频率,等到电网正常时候开启信号,再开启功率

变频器欠压保护怎么关闭

       电子发烧友

       变频器欠电压故障解决措施

       回答于2019-11-30

       1)设置变频器自动再起动功能

       功率大的设备在起动时造成的电压短时跌落,很容易使变频器因欠压而保护跳停,因此,设置变频器自动再起动功能有效预防欠电压对变频器的影响。其设计就是变频器在失电后,滤波电容器放电,逆变器控制电源失电时能够自动复位。也有部分变频器有“工频切换选用件”,可以通过这种选用件设置因瞬停等原因脱离变频器的电机在复电时继续运转,即作为瞬停再启动装置使用,这样变频器的逆变器控制电源在突然失电后,可以进行自动复位。当前,实现瞬时停电再起动主要有以下几种措施:一是等变频器所控制的设备完全停止后,再进行自行启动;二是利用外加机械制动或者直流制动使变频器所控制的设备迅速停止运行,减少自由旋转时间;三是在通用变频器中采用停电后检测由剩磁产生的感应电动势的频率,通过光耦和比较器将正弦波变成方波,通过检测方波的频率得到电机的运行频率,变频器按照此频率值和相应的电压可再起动变频器所控制的设备。

       2)装设UPS(不间断电源)供电

       当正常交流供电中断时,将蓄电池输出的直流变换成交流持续供电的电源设备,它具有滤波、稳压以及不间断供电的功能,变频器装设UPS电源后,可以充分利用其“失压”或零切换时间的功能特点,预防变频器因欠压而跳停的缺点。即电源一旦失压或瞬间停电,UPS立即将机内电池的电能,通过逆变转换的方法向变频器继续供应合适的电源,使变频器维持正常工作并保护变频器的软、硬件不受损坏,保障变频器控制设备的平稳运行。

       3)调低低电压保护值,延长控制设备的加速时间

       当前很多变频器在供电电源降到其额定值的90%左右时,变频器即可发生跳停,因此,为提升变频器抗电压的功能,可以根据其说明书适当调低变频器低电压保护值,同时,变频器控制的电气设备加速时间短,加速度很高,电源电压会被很快拉低,导致变频器欠电压而跳停,因此,可根据生产工艺需求,适当延长变频器所控制设备的加速时间,降低电网出现降压对变频器的影响,如果使用了PID技术控制器,注意降低系统响应,减P加I,延长滤波时间。

       总之,变频器在调试与使用过程中会遇到各类不同故障,其中由于电网电压波动对其影响最大,因此,在装置变频器时,应该根据工艺流程性质,结合变频器本身参数以及控制系统状况,采取相应的措施来预防过电压或者欠电压对其的危害,才能预防电压波动变频器内部电路损坏,保障变频器安全稳定工作。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言