发布时间:2024-07-15 07:30:13 人气:
e231系电车的近郊型概说
在2000年6月开始小山电力动车组区(现名小山车辆中心)配置,在宇都宫线(东北本线)作普通及快速列车的服务。在2001年开始服务范围至高崎线的普通和快速服务。新开设的湘南新宿线以E231系近郊型作主力,连带横须贺线也有E231系在线。在2004年10月16日的时间表改后,同一动车段的115系给全面取缔。由2004年开始部署在国府津车辆中心,以汰换老化的113系列车。在2006年3月18日的时间表修正中,正式取缔所有113系。车体颜色:(新)湘南色 上面为土**、下面为深绿色
与通勤型比较,近郊型有以下特点:
· 牵引逆变器是使用日立制作所造的SC59A型IGBT器件。
· 车头上方是使用HID作照明。
· 由于预计在2011年湘南新宿线会进一步直通东海道本线、高崎线等,甚至在关东全域使用,所以全部车辆都是属寒地版本,车厢全部使用半自动车门。
· 2003投入服务的车辆已对噪音作出改善。
在2004年以后投入服务的车辆就作出了下列改动:
· 增加半对向式座位车辆数目,(国府津:1,2,9,10,14,15号车,小山:1,2,14,15号车)。
· 运转台的速度计,压力计液晶化。
· 车厢内车门上方的LED显示器由1段式变成2段式。2段式LED显示器的下段显示牌会显示(顺序)行车信息→行车路线→关上手提电话提示→恐怖袭击的应付办法。当JR东海东海道线(热海 - 沼津)发生故障,需由JR东日本作代替运输时也会打出文字显示。
· 添加了自动广播设备。
· 车门加上了车门警示灯。
· 加上车外扩音器。
· 空调的匹数增加。
· 2005年以后由新津车辆制作所制造的编成的排障器角度改变了。
奥迪E-tron和保时捷Taycan的逆变器设计
周末我想聊一下E-tron和Taycan的逆变器设计,在这里和我们认知差异的地方有几个点:1)E-tron和Taycan采用的相似的逆变器设计,这个出自日立的设计,前后桥和两台车(400V和800V)里面都有很大的相似性
2)400V和800V的主要差异,主要是对于IGBT功率模块的修改(IGBT芯片的耐压从700V扩大至1,200V以外),其他平滑电容器、电机控制器主板、电流传感器等主要零部件作为标准零部件开发这个事情还是挺意外的,我想从逆变器的开始来讲这个事情。备注:主要的信息来源是日本汽车工程师学会上“车载逆变器的高电压及大功率密度技术”,的讲演,Marklines上有关于这些内容的专题内容
图1日立给奥迪开发的逆变器
01
E-tron和Taycan的逆变器相似的地方 我们先列一下相似的地方:1)这两个逆变器都是由日立帮助奥迪和保时捷的工程师进行开发的
2)都采用兼容的方式来做的,如下所示,Etron是通过集成安装的布置,Taycan是通过桥接器进行安装,这样同样的部件进行组合就可以得到不同的驱动桥
图2E-tron和Taycan的前后桥逆变器
02
E-tron和Taycan的逆变器有差异的地方
1)参数和使用
E-tron的逆变器的电压覆盖范围为150V-460V,10秒持续的最大电流为530A,持续电流最大为260A,功率密度为30kVA/L,内部采用了三个IGBT模块(powermodules)。
Taycan的逆变器的电压覆盖范围为450V-850V,分两种不同的类型逆变器300具有3个新型IGBT功率模块,最大相电流2秒额定为335A,持续工作电流为190A,功率密度为62.3kVA/L。逆变器600在功率单元上采用并联2个IGBT功率模块的方式来解决(一共搭了6个),最大相电流2秒额定为670A,持续工作电流为380A,均是前者的2倍,输出功率密度为94.3kVA/L。
图3逆变器的参数
如下图所示,三种逆变器的重量分别为8kg、7.4kg和10.5kg。
图4Taycan的两个不同的型号
从原理图里面,在滤波设计,被动放电电阻方面还有差异,E-tron只有一个主动放电的回路,Taycan还加入了一个被动放电。从放大电流的角度,Taycan可以做一个并联的考虑。
图5逆变器原理图
在整体内部的布置方面,由于在相似的体积下,Taycan需要提供6个IGBT的空间,所以两者在IGBT驱动板和控制板,IGBT的布置方向(E-tron是躺着、Taycan是立着),Busbar设计都有很大的区别。Taycan在功率模块开口处的AC/DC端子、信号端子以及直流端子,采用了2个正极、2个负极交互配置的结构,通过抵消由于反向瞬态电流引起的磁通,以降低寄生电感。
图6两个逆变器的布置差异
小结:保时捷确实用了SiC器件,但是部件主要用于充电部分,有详细信息我们后续也可以仔细关注下,我个人感觉Taycan很多地方是在开发中有的技术为了量产做了妥协,是性能优先为目标
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
日立变频器wj300怎么用外部端子控制
1、打开变频器的前端盖,然后将3.7kW东元变频器的CPU主板的部分电路,输出为三相U,V,W即可。
2、变频器端子命令方式就是启动控制通过变频器端子进行控制。变频器的端子外部接入开关进行控制。
3、变频器VariablefrequencyDrive,VFD是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流交流变直流、滤波、逆变直流变交流、制动单元、驱动单元、检测单元微处理单元等组成。
4、变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
电梯产品的3VF是什么意思,请解答一下 ,谢谢!
VVVF,是Variable Voltage and Variable Frequency的缩写, 意为:可变电压、可变频率,也就是变频调速系统。 VVVF控制的逆变器连接电机,通过同时改变频率和电压,达到磁通恒定(可以用反电势/频率近似表征)和控制电机转速(和频率成正比)的目的,所以多应用在变频器中,主要还是为了电梯的节能啊。
求教可控硅和IGBT整流的原理和电路实现方法
一种大容量IGBT整流器控制技术1引言随着现代微电子、功率元件、计算机的发展,整流器结构及其控制技术也得到了迅猛的进步。从二极管整流、可控硅整流,再到大容量igbt整流器,各种整流器都得到实际的应用。针对不同的技术需求,选择不同的整流结构,同时采纳了各种先进的控制技术。因此基于功率元件的通流能力和耐压水平,选择某种结构的整流器在传动系统中至关重要;而其软件控制技术也保障了传动设备在现场安全运行。2大容量igbt整流器在大型冷轧厂的应用某冷轧厂主轧机五机架,主马达功率最大为5750kw。包括卷曲机在内,总共采用了6套大容量传动系统。在大容量传动系统中,采用日立矢量变频调速控制系统,其中整流器和逆变器功率元件均采用三菱3.3kv/1.2ka规格的igbt。每台整流器采用独立直流母线给逆变器供电,而中容量和小容量传动系统则采用公共直流母线。在整流器中采用pwm控制方式以及igbt功率元件,一方面其高功率因数节省电能的同时,另一方面能够减少谐波,因此省去部分svc装置。这套变频装置具有输出电压谐波小,功率因数高,调速精度高,系统动态特性好等诸多优点。同时由于全数字控制方式,整套系统在工艺调整、日常维护等方面简洁方便并能准确查找故障。3igbt整流器控制原理igbt整流器一方面用来将电网电压整流成直流电压送往逆变器;同时也可以将反向制动产生的能量通过igbt逆变成网侧频率电压送往电网。在igbt模块中,与igbt元件还并联一个二极管。此二极管在逆变器中常作续流二极管,将马达反向制动过程的机械能量反馈回逆变输入侧。而在igbt整流器中,整流过程主要是依靠二极管进行全波整流,并不是依靠igbt进行整流,也不进行调压,调频调压主要由逆变器实现;igbt元件的功能主要体现在提高功率因数为1,同时将系统回馈能量逆变成工频电压反馈回电网,如图1所示。图1大容量igbt整流器主回路3.1日立变频器三电平pwm控制技术整流器采用三电平系统整流电路,它将输出直流电压为edc通过钳位二极管分为+edc/2、0和-edc/2三电平。采用三电平系统,可以有效的降低每个igbt承受的压降,从而提高整流器容量。在三电平控制系统中,门极指令逻辑见表1。图2为整流器的控制信号和波形示意图。通过双极性载波信号与一同步交流电压比较,输出门极控制脉宽调制信号,按照表1的指令逻辑,来控制igbt的导通[1]。表1igbt控制指令逻辑图2igbt控制指令及波形五机架中大马达额定电压达1750v,额定电流可达1553a。这么高的电压和大电流,如果采用高频载波频率,igbt发热量也较高,对igbt装置的损伤就较大。为了减少igbt的发热量以延长使用寿命,为此载波频率采用相对较低至600hz。但是这种控制方式带来的结果可能会使输出的电压波形失真较高,影响控制精度等问题。为解决这个问题,采用预见性pwm控制技术,即先预测采用600hz频率的载波频率会给输出pwm波带来多少误差,然后通过控制回路输出的pwm波形对其进行补偿,使输出的电压波形更接近正弦波[1]。3.2输出电压控制结构[1]图3整流器数字控制系统框架图图3为整流器数字控制系统框架图,其所含基本结构如下:(1)自动电压调节器(avr)avr控制可以在负载或电网波动时,通过反馈电压和和指令电压进行比较控制,保证输出直流电压与指令一致。avr采用比例积分pi环节,avr的输出作为整流器矢量控制中有功电流的给定。(2)负荷补偿整流装置采用负荷补偿环节,当负荷变化引起直流电压波动时,该环节通过反馈到输入环节可以减小该波动。负荷补偿计算逆变器侧功率的消耗变换,将功率波动计算结果作为整流器控制输入的一部分,改变有功电流的给定,减少直流电压的变化。(3)同步电源与pwm同步电源通过将网侧电源变压后得到;同步电源与高频载波信号通过比较结构产生pwm。由于该系统为数字系统,在pwm的产生过程中,考虑到高功率因数的控制,采用了矢量控制技术,将网侧无功控制为0。3.3谐波控制技术pwm变频器输出波形以接近正弦为目的,但是其输出电压中不可避免存在着谐波。对于制动能量反馈回电网的波形中也一样存在。产生谐波的主要原因是:(1)在工程应用中,对pwm波形的生成往往采用规则采样法或者专用集成电路器件,并不能保证脉宽调制序列波的波形面积与各段正弦波面积相等;(2)在实现控制时,为了防止逆变器同一桥臂上、下两器件的同时导通而导致直流侧短路,设置了一个导通时滞环节,这些因素不可避免的造成输出波形有所失真[2][3]。对pwm波形作傅氏级数分析,可求得其k次谐波相电压幅值的表达式为:其中:us—变频器直流电压;αi—以相位角表示的第i个脉冲起始/终了时刻;m—同步电压半个周期内pwm脉冲波的个数。从上述公式可以看出,pwm整流器所带来高次谐波的数量与载波的相位有很大关系。对于同一电网下多组大容量整流器运行,采用控制每组间载波相位差相配合,可以很好的消除一些谐波。假设两组整流器运行在同一电网下,图4为载波相位关系。图(a)中两个整流器单元载波相位相同,所以两整流器产生的谐波也同相,因此体现在该系统电网上的谐波为它们之和;图(b)中两整流器载波相位相差180o(假设一个载波周期对应360o),那么两个整流器系统产生的某次谐波相位也将相差180o,幅值相反,则产生在电网上的合成谐波幅值则接近0。因此,对于n次谐波来说,可以通过设置同一电网下不同整流器载波相位差δφ并配合,来减少系统所产生的谐波[1]。,其中m为整流器单元个数。图4载波相位与谐波的关系原理图图5现场调整载波相位前后电压波形图图5中所示的两个现场测试波形图,图a为整流器控制中未调整载波相位配合时谐波对网侧的影响;图b为将酸轧、连退和镀锌三条机组的整流器的pwm载波相位调整配合后网侧输入点电压波形。因为现场整流器数量较多且复杂,每个整流器组具体调整的相位差由日方进行仿真得出。可以看出,调整载波相位配合后,谐波对网侧电压的影响明显减小。3.4高功率因数控制技术功率因数控制在变频器控制中是一个重要课题,对于电机节能有重要意义。但是变频器功率元件和控制方式的不同,其整流电路的功率因数也不尽相同。见表2。表2不同整流器的功率因数及特点[2][3]③功率可以双向传递,具有再生能力对于功率因数高的要求,便选择pwm了整流电路,其中功率元件采用了igbt功率元件。通过基于igbt的控制系统可以很好的将功率因数控制为1,将能量从网侧几乎全部传递到马达,同时将在反向制动时将能量反馈回电网。在这个功率因数控制中,采用矢量控制技术。其中电流调节器检出电源侧电流,通过(u,v,w)到(dfb,qfb)变换,将它分解为与电源电压同相的有功分量iqf和与电源电压正交的无功分量idfb。而将给定id*设定为0,并控制参数使两个反馈值与给定值iq*和id*一致。由此,可以使输入电压与电流同相,也就是功率因数为1。另外,将自动电压调节器和负荷补偿环节的输出作为有功电流给定来控制整流器输出。图6为功率因数控制过程中整流器矢量图,图a为非高功率因数参数矢量图,可见vs和is相位不一致,所以输入功率因数小于1;图b为对整流器矢量控制后的矢量图,vs和is被控制到同一相位,使输入功率因数为1。图6整流器向量图4结束语这套大容量高功率因数整流器在冷轧厂的成功应用,保证了生产的稳定运行。在试运行阶段,系统运行稳定,操作维护方便简洁。在其控制系统中,运用了大量的新技术,低载波频率和载波相位配合等技术的应用有效降低了谐波对电网的影响;同时,矢量控制高功率因数技术,保证了网侧输入功率因数达到1.0。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467