发布时间:2024-07-08 21:40:19 人气:
泰琪丰光伏逆变器设置
泰琪丰光伏逆变器设置:连接逆变器、连接监视器、设置参数、确认设置、启动逆变器、监测逆变器。
1、连接逆变器:将逆变器与光伏电池板和电网连接,确保电路连接正确。
2、连接监视器:将逆变器与监视器连接,以便监控逆变器的性能和输出。
3、设置参数:使用监视器界面进入逆变器设置界面,根据实际情况设置参数,如输出功率、电压等。
4、确认设置:确认设置后,保存设置并退出设置界面。
5、启动逆变器:启动逆变器,检查输出是否正常,如果出现问题,可以通过监视器进行调整。
6、监测逆变器:定期监测逆变器的性能和输出,以确保其正常运行,如有问题及时修复。
上的逆变器,线圈是怎么绕制的请各路师傅帮帮忙,请说清楚些好吗?(6伏升400-500)
逆变器的初级线圈采用双线并绕,绕完后一个线圈的头与另一个线圈的尾相接然后接电源正,剩下的两个头和尾分别接两个(或两组)输出三极管的集电极。只有两个头的是次级线圈,直接接用电器或整流器。
简单的逆变器电路图分析
这里介绍的逆变器(见图)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该逆变器的工作原理及制作过程。电路图
工作原理
这里我们将详细介绍这个逆变器的工作原理。
方波信号发生器(见图3)
这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路
这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz。由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。
场效应管驱动电路
由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V。如图4所示。
MOS场效应管电源开关电路。
这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS场效应管的工作原理。
图5
MOS场效应管也被称为MOSFET,既MetalOxideSemiconductorFieldEffectTransistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。图6
为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。
图7a图7b
对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。我们也可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。图8给出了P沟道的MOS场效应管的工作过程,其工作原理类似这里不再重复。
图8
下面简述一下用C-MOS场效应管(增强型MOS场效应管)组成的应用电路的工作过程(见图9)。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程(见图10)。工作原理同前所述。这种低电压、大电流、频率为50Hz的交变信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成直流到交流的转换。这里需要注意的是,在某些情况下,如振荡部分停止工作时,变压器的低压侧有时会有很大的电流通过,所以该电路的保险丝不能省略或短接。
制作要点
电路板见图11。所用元器件可参考图12。逆变器用的变压器采用次级为12V、电流为10A、初级电压为220V的成品电源变压器。P沟道MOS场效应管(2SJ471)最大漏极电流为30A,在场效应管导通时,漏-源极间电阻为25毫欧。此时如果通过10A电流时会有2.5W的功率消耗。N沟道MOS场效应管(2SK2956)最大漏极电流为50A,场效应管导通时,漏-源极间电阻为7毫欧,此时如果通过10A电流时消耗的功率为0.7W。由此我们也可知在同样的工作电流情况下,2SJ471的发热量约为2SK2956的4倍。所以在考虑散热器时应注意这点。图13展示本文介绍的逆变器场效应管在散热器(100mm×100mm×17mm)上的位置分布和接法。尽管场效应管工作于开关状态时发热量不会很大,出于安全考虑这里选用的散热器稍偏大。
逆变器的性能测试
测试电路见图14。这里测试用的输入电源采用内阻低、放电电流大(一般大于100A)的12V汽车电瓶,可为电路提供充足的输入功率。测试用负载为普通的电灯泡。测试的方法是通过改变负载大小,并测量此时的输入电流、电压以及输出电压。其测试结果见电压、电流曲线关系图(图15a)。可以看出,输出电压随负荷的增大而下降,灯泡的消耗功率随电压变化而改变。我们也可以通过计算找出输出电压和功率的关系。但实际上由于电灯泡的电阻会随受加在两端电压变化而改变,并且输出电压、电流也不是正弦波,所以这种的计算只能看作是估算。以负载为60W的电灯泡为例:
假设灯泡的电阻不随电压变化而改变。因为R灯=V2/W=2102/60=735Ω,所以在电压为208V时,W=V2/R=2082/735=58.9W。由此可折算出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时输出电压为200V。
自制逆变器方法及注意事项盘点
通俗的来讲,逆变器是一种将直流电转化为交流电的装置。可能大家不太清楚他是做什么用的,这样讲吧,我们平时私家车上可是必备的小装备啊!还有,笔记本,电视,碟机之类的东西,都是可以接用逆变器的,可以有效地调节电压根据所能承载的电压量合理调整,为我们提供便利!去超市购物这个小神器那可是价格不菲的哦!今天,小编就来教大家自己DIY一个小型逆变器!逆变器,它由逆变桥、控制逻辑和滤波电路组成。
广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等。
简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。我们处在一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐。在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。
方法/步骤:
1.先准备骨架,把骨架上22个引脚,剪去4个,下面红圈处就是表示已经剪去的脚。上面二个独立的脚是高压绕组用的,远离下面的脚有利于绝缘,中间及下面的脚是低压绕组用的,左边是一个绕组2圈,右边是另一个绕组2圈。
2.先绕二分之一的高压绕组(次级),先在骨架上用高温胶带粘一层,这样做是为了防止导线打滑,用一根0.93线绕一层,约30圈(注意的是,高压绕组的线头要做好绝缘,我是套进一小段热缩套管,用打火机烤一下,就紧紧包在线头上了),再用胶带固定住线头,不要让它散出来,并在高压绕组的外面用高温胶带包三层。
3.下面就可以绕低压绕组了(初级),低压绕组分成二层绕,也就是每一层是2加2,用5根线并绕
4.先用5根0.93线绕2圈(见图二中红线),中间留空隙,再在空隙处用另外5根线绕2圈(见图二中蓝线),每根线长约37CM。用同样的方法绕二层,层间包二层胶带,这样就相当于用了10根线并绕。绕完低压绕组,在绕组外用高温胶带包三层。绕低压绕组要注意的问题是:线头留在下面,即骨架引脚处,线尾留长一点,暂时留在骨架的上面(等绕完高压绕组后要向下折下来)。
5.再继续绕高压绕组,绕完另外的30圈,要注意的是,这30图要和里面的30圈绕向相同,这点很关健。如果一层绕不下,就把剩下几圈再绕一层。D),绕完高压绕组后,在外面用高温胶带包三层,就把低压绕组原先留在上面的线头折下来,准备焊在骨架的脚上。去漆可以用脱漆剂,用棉签沾一点脱漆剂,抹在线头上,过一会儿,漆就掉下来了,就可以焊了。
6.再后在整个绕组的外面包几层高温胶带,绕好的线包外观要饱满平整。
7.现在可以插磁芯了,插磁芯之前要对磁芯的对接面做清洁处理,我是用胶带粘几下,把磁芯对接面的粉末全清洁干净,插入磁芯,用胶带扎紧,有条件的话对磁芯对接处用胶水做固定。
注意事项:
1.磁环是采用直径40MM的铁硅铝磁环,用1.18的线,在上面穿绕90圈,线长约4.5米,如果用导磁率为125的磁环
2.电感量大约在1.5mH,用导磁度为90的磁环,电感量大约在1mH左右。我做过试验,用二个这样的磁环,每个电感量在0.7mH以上就可以正常工作了。
3.绕制时分二层,第一层,45圈,因为磁环外圈和内圈的周长不同,所以第一层绕时,内圈的线要紧密排列,而外圈的线是每圈之间留有一个空隙的。绕第二层时,内圈是叠在第一层线上,外圈是嵌在第一层线的空隙中,这样绕出来的线圈才好看。当然,好象是否好看,也不影响使用。
4.如果有条件,一定要做一个耐压测试,任一个低压绕组对高压绕组的绝缘要在1500V以上,这样才可以放心使用。
自己亲手做的逆变器拿在手里可是很有成就感的哦!而且还能给我们的日常生活带来不少的便利,逆变器在车上,练歌房等地方,都是不可或缺的神器呢,小编提醒大家哦,在自己制作的时候可是要注意方法得当哦!按部就班的去操作,认真解读注意事项因为中间还涉及要用电通电,所以一定不要用湿手去触碰,时刻注意用电安全!
什么是光伏逆变器
摘要:光伏逆变器(PVinverter或solarinverter)可以将光伏(PV)太阳能板产生的可变直流电压转换为市电频率交流电(AC)的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。光伏逆变器是光伏阵列系统中重要的系统平衡(BOS)之一,可以配合一般交流供电的设备使用。下面来了解一下光伏逆变器的知识!一、什么是光伏逆变器
逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变变压器型逆变器。
二、结构原理
逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。一般由升压回路和逆变桥式回路构成。升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。然后让脉冲波通过简单的滤波器形成正弦波。
三、逆变器的元器件构成
1、电流传感器
对于电流传感器要求精度高、响应时间快,而且耐低温、高温等环境要求,目前国内很多厂家都用开环电流传感器来取代闭环电流传感器,如:JCE1000-AXS、JCE1500-AXS、JCE2000-AXS等
2、电流互感器
一般采用BRS系列电流互感器,从几百到几千A不等,输出信号一般采用0-5A为标准
3、电抗器
三、功能
1、自动运行和停机功能
早晨日出后,太阳辐射强度逐渐增强,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开始运行。进入运行后,逆变器便时时刻刻监视太阳电池组件的输出,只要太阳电池组件的输出功率大于逆变器工作所需的输出功率,逆变器就持续运行;直到日落停机,即使阴雨天逆变器也能运行。当太阳电池组件输出变小,逆变器输出接近0时,逆变器便形成待机状态。
2、最大功率跟踪控制功能
太阳能电池组件的输出是随太阳辐射强度和太阳电池组件自身温度(芯片温度)而变化的。另外由于太阳电池组件具有电压随电流增大而下降的特性,因此存在能获取最大功率的最佳工作点。太阳辐射强度是变化着的,显然最佳工作点也是在变化的。相对于这些变化,始终让太阳电池组件的工作点处于最大功率点,系统始终从太阳电池组件获取最大功率输出,这种控制就是最大功率跟踪控制。太阳能发电系统用的逆变器的最大特点就是包括了最大功率点跟踪(MPPT)这一功能。
四、选购步骤及方法
1、功率
一般根据系统的要求配置对应功率段的逆变器,选型的逆变器的功率应该与太阳能电池方阵的最大功率匹配,一般选取光伏逆变器的额定输出功率与输入总功率相近左右,这样可以节约成本。
2、关键技术指标
1)选择合适的输入输出电压范围,确保产品的最优组合。
2)逆变器的欧洲效率:它的高低将直接影响到光伏发电系统的设计成本与发电效率。
3)太阳电池方阵最大功率跟踪功能(MPPT)及其效率。
4)应注意所选用的逆变器应有基本的保护功能,如过流/短路保护、过功率保护,过温保护,防雷保护、孤岛保护等功能。
5)逆变器输出电流波形畸变率(THD%)要低于4%。
3、认证标准
作为光伏电站的核心设备,为保证电站的稳定、可靠、持续运行,并网逆变器必须有很高的可靠性。它应具有销售目的地的安规认证,电磁兼容认证,及各国并网认证:(以欧洲为例)
安规:EN62109-1,EN62109-2
电磁兼容:EN61000-6-1,EN61000-6-2,EN61000-6-3,EN61000-6-4
并网认证:VDE0126-1-1(德国)
4、品牌与服务
建议购买目前市场上口碑不错的品牌,因为一般品牌形象好的公司,通常会在技术,以及维修服务上有较大的投资,能满足对客户的承诺。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467