Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器控制方案

发布时间:2024-06-30 11:00:19 人气:

单相逆变器多环反馈控制

       摘要:应用了一个多环反馈控制策略来调节不间断电源逆变器的输出。分析了这种控制策略的时域与频域特性。最后给出了仿真和实验波形,结果证明了这种控制方法对线性负载和整流桥负载都有很好的控制效果。

       关键词:逆变器;多环反馈;数字控制

       0 引言

        过去对逆变器的研究侧重于采用新型高频开关功率器件,从而减小滤波器尺寸,优化输出滤波器设计以实现低输出阻抗等,这些措施能在一定程度上抑制输出波形失真并改善负载适应性,但是还不够理想。为了进一步提高逆变器的动态和静态特性,必须采用新的控制方法。采用重复控制技术,可以较好地抑制周期性干扰,但是,重复控制延时一个工频周期的控制特点,使得单独采用重复控制的逆变器动态特性极差,基本上无法满足逆变器的指标要求。如果将双环控制和重复控制相结合形成复合控制方法,就可以达到较好的效果。但是,这种控制方法要占用较多的运算时间,提高了成本,使系统变得复杂。具有非线性补偿的滑模控制在逆变器的闭环控制中也得到了应用,尽管滑摸控制有着快速的动态响应,对系统参数和负载变化不敏感,但是建立一个令人满意的滑模面是很困难的。

        电容电流采样的双环控制可以极大地提高系统的动态反应速度,如果把顺馈控制和逆馈控制相结合,组成复合控制系统,那么可以达到比较理想的控制效果。本文所采用的就是这种带有顺馈补偿的输出电压和滤波电容电流反馈的复合控制方案。

       l 逆变器的控制模型

        图1是全桥逆变器的主电路图,Vd是直流电压源,S1~S4是4个IGBT开关管,L和C是滤波电感和滤波电容,用于滤除逆变系统中的高次谐波。RL和RC是滤波电感和滤波电容的等效串联阻抗。z是负载,负载可以是纯阻性也可以是非线性等。图1所示的逆变器主电路由于开关器件的存在是个非线性系统。但是,当器件的开关频率远远大于逆变器输出电压的基波频率时,可以用状态空间平均和线性化技术来分析。按照图1所示,可以得到下面的逆变器模型的动态方程:

       式中:iC,iL,iZ,分别是通过电感,电容,负载的电流。

        式中:ic,iL,iz上面的动态方程显示了逆变器中各个量的相互关系。在上面建立方程的过程中,逆变器可以看作一个具有恒定增益的放大器。以上述的动态方程为基础,可以设计一个如图2所示的复合控制器。图2中各参数的定义如表1所列。

       2 控制器模型的特性分析

        在图2控制框图中,电压环作为逆馈瞬时控制外环,电流环作为逆馈瞬时控制内环。逆变器输出电压经过比例环节与参考电压比较,误差经过PI调节后作为电流控制内环的一部分基准,另一部分基准来自于参考电压的顺馈,这个复合基准与来自比例环节的电容电流比较后,再经过比例调节和放大环节就得到了逆变器开关管的输出电压。为了能够更清楚地分析上面的控制原理,现在采用下面的工程化分析方法,即

        1)由于电压和电流逆馈环节的滤波常数很小,将其忽略;

        2)滤波电感和滤波电容的等效串联阻抗对电路性能的影响较小,也将其忽略;

        3)以线性电阻为负载对象分析。

        取PI调节函数为可以对Uref实现误差为零的复现(证明略)。利用上面的分析,可以把图2化简为图3。

       这样,得到逆变器的开环传递函数为:

       其极点和零点为

       通常则式(5)可以化简为

       根据上面的函数表达式,作出的闭环根轨迹如图4所示。图4中虚线部分是电压瞬时值反馈控制的根轨迹,实线是本文所采用的复合控制的根轨迹图。图4(a)和图4(b)分别是轻载和满载的轨迹图。从图4中可以看出,本文所采用的控制方案由于在开环传递函数中引入的附加零点,使闭环系统的根轨迹远离虚轴,大大增加了系统的稳定性。而且!萼笋的值比较大,因此可以减少系统的调节时间,又不会造成系统较大的超调。

       3 仿真与实验

        图5~图8是用逆变器验证上面的控制方案的仿真结果。图中的切换都是选在正弦波的波峰处,这种情况代表了切换的最大电压崎变。图中所示波形的动态调整时间小于0.5ms,稳态整流桥负载THD为1%。图9和图10是系统的开环和闭系统的相位裕度大于60℃,为数字控制的滞后,死区效应,滤波器的滞后特性等留有足够的稳定裕量。而且调节时间很快,通带内增益稳定,且相移很小。

       4 结语

        分析了一个用于逆变器的复合控制技术,控制原理分析以及仿真和实验结果表明,这种控制方法稳定性好,稳态和动态性能优良,是一个值得推广应用的逆变器控制技术。

光伏并网逆变器控制有哪几种方法

       逆变器的主电路均需要有控制电路来实现,一般有方波和正弦波两种控制方式,方波输出的逆变电源电路简单,成本低,但效率低,谐波成份大。正弦波输出是逆变器的发展趋势,随着微电子技术的发展,有PWM功能的微处理器也已问世,因此正弦波输出的逆变技术已经成熟。

       方波输出的逆变器

       1.方波输出的逆变器多采用脉宽调制集成电路,如SG3525,TL494等。实践证明,采用SG3525集成电路,并采用功率场效应管作为开关功率元件,能实现性能价格比较高的逆变器,由于SG3525具有直接驱动功率场效应管的能力并具有内部基准源和运算放大器和欠压保护功能,因此其外围电路很简单。

       正弦波输出的逆变器

       2.正弦波输出的逆变器控制集成电路,正弦波输出的逆变器,其控制电路可采用微处理器控制,如INTEL公司生产的80C196MC、摩托罗拉公司生产的MP16以及MI-CROCHIP公司生产的PIC16C73等,这些单片机均具有多路PWM发生器,并可设定上、下桥臂之间的死区时间,采用INTEL公司80C196MC实现正弦波输出的电路,80C196MC完成正弦波信号的发生,并检测交流输出电压,实现稳压。电路输出端一般采用LC电路滤除高频波,得到纯净的正正弦波。

串联谐振逆变器的控制方法是什么?

       1.串联谐振逆变器基本结构

串联谐振逆变器的基本原理图如图1所示。它包括直流电压源,和由开关S1~S4组成的逆变桥及由R、L、C组成的串联谐振负载。其中开关S1~S4可选用IGBT、SIT、MOSFET、SITH等具有自关断能力的电力半导体器件。逆变器为单相全桥电路,其控制方法是同一桥臂的两个开关管的驱动信号是互补的,斜对角的两个开关是同时开通与关断的。

       2串联谐振逆变器的控制方法

       2.1 调幅控制(PAM)方法

调幅控制方法是通过调节直流电压源输出(逆变器输入)电压Ud(可以用移相调压电路,也可以用斩波调压电路加电感和电容组成的滤波电路,来实现调节输出功率的目的。即逆变器的输出功率通过输入电压调节,由锁相环(PLL)完成电流和电压之间的相位控制,以保证较大的功率因数输出。

       这种方法的优点是控制简单易行,缺点是电路结构复杂,体积较大。

       2.2 脉冲频率调制(PFM)方法

脉冲频率调制方法是通过改变逆变器的工作频率,从而改变负载输出阻抗以达到调节输出功率的目的。

从串联谐振负载的阻抗特性

可知,串联谐振负载的阻抗随着逆变器的工作频率(f)的变化而变化。对于一个恒定的输出电压,当工作频率与负载谐振频率偏差越大时,输出阻抗就越高,因此输出功率就越小,反之亦然。

脉冲频率调制方法的主要缺点是工作频率在功率调节过程中不断变化,导致集肤深度也随之而改变,在某些应用场合如表面淬火等,集肤深度的变化对热处理效果会产生较大的影响,这在要求严格的应用场合中是不允许的。但是由于脉冲频率调制方法实现起来非常简单,故在以下情况中可以考虑使用它:

1)如果负载对工作频率范围没有严格限制,这时频率必须跟踪,但相位差可以存在而不处于谐振工作状态。

2)如果负载的Q值较高,或者功率调节范围不是很大,则较小的频率偏差就可以达到调功的要求。

       2.3脉冲密度调制(PDM)方法

脉冲密度调制方法就是通过控制脉冲密度,实际上就是控制向负载馈送能量的时间来控制输出功率。其控制原理如图2所示。

这种控制方法的基本思路是:假设总共有N个调功单位,在其中M个调功单位里逆变器向负载输出功率;而剩下的N-M个单位内逆变器停止工作,负载能量以自然振荡形式逐渐衰减。输出的脉冲密度为M/N,这样输出功率就跟脉冲密度联系起来了。因此通过改变脉冲密度就可改变输出功率。

脉冲密度调制方法的主要优点是:输出频率基本不变,开关损耗相对较小,易于实现数字化控制,比较适合于开环工作场合。

脉冲密度调制方法的主要缺点是:逆变器输出功率的频率不完全等于负载的自然谐振频率,在需要功率闭环的场合中,工作稳定性较差。由于每次从自然衰减振荡状态恢复到输出功率状态时要重新锁定工作频率,这时系统可能会失控。因此在功率闭环或者温度闭环的场合,工作的稳定性不好。其另一个缺点就是功率调节特性不理想,呈有级调功方式。

交流逆变器三种控制方式

       SPWM、CFPWM和SVPWM的基本特征和各自的优缺点如下:

       1、SPWM:

       基本特征:以频率与期望的输出电压波相同的正弦波作为调制波,以频率比期望波高得多的等腰三角波作为载波。由它们的交点确定逆变器开关器件的通断时刻,从而获得幅值相等、宽度按正弦规律变化的脉冲序列。

       优缺点:普通的SPWM变频器输出电压带有一定的谐波分量,为降低谐波分量,减少电动机转矩脉动,可以采用直接计算各脉冲起始与终了相位的方法,以消除指定次数的谐波。

       2、CFPWM:

       基本特征:在原来主回路的基础上,采用电流闭环控制,使实际电流快速跟随给定值。

       优缺点:在稳态时,尽可能使实际电流接近正弦波形,这就能比电压控制的SPWM获得更好的性能。精度高、响应快,且易于实现。但功率开关器件的开关频率不定。

       3、SVPWM:

       基本特征:把逆变器和交流电动机视为一体,以圆形旋转磁场为目标来控制逆变器的工作,磁链轨迹的控制是通过交替使用不同的电压空间矢量实现的。

       优缺点:8个基本输出矢量,6个有效工作矢量和2个零矢量,在一个旋转周期内,每个有效工作矢量只作用1次的方式,生成正6边形的旋转磁链,谐波分量大,导致转矩脉动。

       

扩展资料:

       用相邻的2个有效工作矢量,合成任意的期望输出电压矢量,使磁链轨迹接近于圆。开关周期越小,旋转磁场越接近于圆,但功率器件的开关频率将提高。用电压空间矢量直接生成三相PWM波,计算简便。与一般的SPWM相比较,SVPWM控制方式的输出电压最多可提高15%。

用光伏太阳能进行逆变控制, 这两种策略你都知道吗

       1、多数逆变器采用的控制方法可根据控制原理分为两类:采用经典控制策略的逆变器;采用现代控制策略的逆变器。

        (1)、经典控制策略:该控制策略主要的控制方式是给定一个目标电压均值,通过反馈采样设备给出的电压均值的采样值,用采样值和目标值做差,进而得到一个误差值,再以此误差值为基础建立新的反馈系统进行PI调节,从而得到可控的输出。作为一个恒值调节系统,电压均值反馈控制最大的优点是无净差输出,最大的缺点是系统响应速度慢。

        (2)、现代控制策略:采用该策略可以任意配置系统的极点,从而改善系统的动态特性。但是,该控制策略在最初建立系统状态变量模型时,负载实际的动态特性难以预估,因而实际控制方案仅能假定空载或假定负载。针对该缺点,可在控制系统中加入负载电流前馈补偿环节,预先对系统进行鲁棒分析,以大大改善系统的动态品质,使得系统具有更好的稳态性能和动态性能。

工频逆变器怎样能在前面加个电路来控制逆变器的开关!

       在逆变器输出端加一小取样电阻,用来检测负载电流,并用555时基电路(接成施密特电路使用)来检测该电阻上之压降,当负载电流小于某值或无时,555输入端为低电平,其输出变为高电平,利用此高电平去控制逆变器的部分电路工作与否即可实现开关作用。

       工频逆变器:

       工频逆变器是一种DC/AC的转换器,采用高频脉宽调制技术和微电脑控制技术设计,将电池组的直流电源转化成输出电压和频率稳定的交流电源。

       而具有较高的转换效率(在满负载状态下可高达80%以上)。同时还有很强的非线性负载驱动能力。该逆变电源还可对输入电压、电流和输出电压、电流进行检测监控,从而实现免人看守维护的功能。

       工频逆变器有很多应用领域,比如在航空工业中利用逆变器提供一个 到400Hz 频率转换等,一般来讲根据实际应用的需要而改变输入电压,这就要用到逆变器了。

       逆变器应用领域:

       1、工业过程控制和应用例如开关设备,程序逻辑控制

       2、电信行业中枢和无线应用等场合

       3、数据中心和计算机房

       4、新兴能源行业例如太阳能、风力发电、燃料电池等

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言