Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器spd电

发布时间:2024-06-23 17:30:13 人气:

chk009电路原理

       000 POWER ON:驱动器供电正常。

       001 NEW RUN:重新初始化运行。

       002 GO TO SLEEP: 变频器进入节能模式。

       003 STACK WARN: 软件中堆找超出允许范围。

       004 POWER DOWN:记录一个断点信号,即拉闸。

       005 EXTERN FLASH: GDCB的FLASH内存记录失败。

       006 EXTERN RAM: GDCB的RAM内存记录失败。

       007 OMU PRESENT: 表明OMU已插在变频器的相应接口上可以正常使用。

       008 OMU PROHIBIT: 检修模式下OMU的软件升级被禁止, TT参数OMU PROHIBITED来 查看。

       009 MANUAL MODE: 变频器在手动模式下。

       010 B_MODE: 变频器在电池模式下。

       011 EXTERN FRAM: FRAM通讯正常。

       100 INV SW OCT: 变频器电流大小超出了允许的上限。

       101 INV I IMBAL:电机三相总电流超出满载电流的10%。

       102 INV ID ERROR,103 INV IQ ERROR: 表明变频器电流校准误差超出允许的上限。

       104 INV IX OFFST,105 INV IY OFFST,106 INV IZ OFFST:表明变频器相电流偏移量超出满载时的5%。

       107 INV GATE FLT: 检测到IGBT门电路供电电压故障。

       108 INV HW OCT: 硬件检测到变频器电流超出了预设值。

       109 OVERLOAD: 检测到过载。变频器处于额定电流状态的时间超出了最大允许值。

       110 DRIVE LIMIT: 变频器已运行在额定电流的极限值。

       111 NO ID FDBK,112 NO IQ FDBK: 在电机开始运行并产生磁场时通过变频器的电路反馈已检测到一个故障。

       113 INV IPM FIT: 变频器智能电源模块已检测到一个故障。

       114 GATESPIYERR: 检测到变频器和逆频器IGBT门电路电压故障。

       115 DESAT ERR: 硬件检测到变频器电流超出预设值。

       200 CNV SW OCT: 逆变器电流大小超出了允许的上限。

       201 CNV ID ERROR,202 CNV IQ ERROR: 表明逆变器电流误差超出满载时的30%。

       203 CNV IX OFFST,204 CNV IY OFFST: 表明逆变器相电流的偏差超出满载时的5%。

       205 CNV GATE FIT:检测到逆变器IGBT门电路供电电压故障。

       206 CNV HW OCT: 检测到逆变器电流超出预设值。

       207 CNV GND FLT: 检测到逆变器有接地故障。

       208 BUS CAP FAIL: 变频器的功率损耗超出了预估值的极限。这表明过多的功率损耗在变频器内,同时也是暗示直流侧电容可能已失效。

       209 DC LINK OCT:表明直流电流过大

       210 CNV IPM FLT: 逆变器智能电源模块已检测到一个故障。

       300 DC BUS OVER: 直流电压超出750V的108%,即810V。

       301 DC BUS UNDER:直流电压低于下极限值。

       302 VAC OVER: 交流电压超出上极限值。

       303 VAC UNDER: 交流电压低于下极限值。

       304 VAC IMBAL: 交流相电压输入相差超过10%.

       305 PLL UNLOCK: 处于相锁定循环的交流相电压已解锁,通常发生在你试图运行一个IGBT已损坏的变频器。

       306 SINGLE PHASE: 表明变频器处于单相模式并且T相接在一稳定的输入电压上。单相供电仅使用T相供电,其他相不接。

       307 PLL FREQ RNG: 当没有PLL UNLOCK故障且变频器交流线电压频率超出44《F《66HZ时记录此故障,这也暗示交流线电压存在故障。

       308 WELDED MXPX: 当变频器的供电进入逐渐下降状态时,如果直流电压在15秒内不下降到底于某一电压下限时,系统将显示MX或PX接触器未动作。

       309 VSCALES OFF: 当测量到的交流线电压和直流电压明显不匹配时记录此故障。此检测只在电梯处于IDLE状态两电压有足够时间处于稳定值时测量。

       310 AC BROWN-OUT: 此故障只是表示交流线电压压降已超过预先设定值的15%,当交流线电压压降低于预先设定值的30%时记录“303 VAC UNDE”故障。变频器将降级运行 并降低运行曲线。但是一旦出现“303 VAC UNDE”故障变频器将结束当前运行后死机。

       400 BRAKE S1,401 BRAKE S2: 此故障表明抱闸开关的状态有错误。请分别在电梯运行中和停止后检查抱闸开关的状态。

       402 BRAKE STATUS: 从抱闸模块反馈的抱闸状态不正确。

       403 BRAKE BY: 一个或两个BY继电器的常闭触点吸合状态不正确。在给抱闸的命令发出前,且电梯将要运行时BY继电器应吸合。

       404 BK DESAT ERR: 硬件检测到抱闸电流超出预设值。

       405 BK BUS OVER: 抱闸供电直流电压超出上限值。

       406 BK BUS UNDER: 抱闸供电直流电压超出下限值。

       407 BK FBK TMOUT: 抱闸反馈超时。

       408 BK SW OCT: 抱闸电流的大小超出了允许的极限值。

       500 OVERSPEED: 电机运行超速,速度上限是根据变频器操作模式有所不同。

       501 POS TRACKING: 位置跟踪误差超出极限值,同时表明位置反馈和运行曲线电梯应处的位置不一致。 502 VEL TRACKING: 速度跟踪误差超出了极限值。速度反馈和跟踪到的速度曲线不一致。

       503 LRT MOTION: 此故障表明在进行转子锁定测试时检测到转子有转动。当使用的电机是PM电机时,转子锁定测试是在上电确定磁铁位置后首次运行时最先做的工作。该上限是1电弧度位移,如果发生此类故障,则可能是抱闸没有调整好。

       504 ENC POS ERR: 在电机为PM电机时,此故障表明驱动对磁场位置的跟踪丢失。此故障对减少扭矩损失是必要的,它可能由于电机偏码器有机械滑移引起,或者在锁定转子测 试时磁铁位置计算错误引起。

       505 TRACTION ERR: 未使用。

       506 STOPPING ERR: 没有在规定的时间内找到桥板。

       507 POS AT 1LS: 1LS位置不合适。电梯不在1LS范围内时1LS信号大小写状态发生转变或1LS信号大写时与电梯所处的井道位置不一致。

       508 POS AT 2LS:2LS位置不合适。电梯不在2LS范围内时2LS信号大小写状态发生转变或2LS信号大写时与电梯所处的井道位置不一致。

       509 FLOOR AT 1LS: 当1LS有效时电梯所处楼层不正确。1LS的大小写转换发生在1LS范围外的楼层。

       510 FLOOR AT 2LS: 当2LS有效时电梯所处楼层不正确。2LS的大小写转换发生在2LS范围外的楼层。

       511 1LS & 2LS : 两个LS信号同时有效,即1LS和2LS同时变大写了。

       512 MISSING VANE: 电梯经过一个桥板时平层信号没有大小写转换。在检修或校正运行时不检测。

       513 NO PRS TRANS: 当电梯在一个平层位置时,即位置传感器处于桥板中时平层的大小写信号没有转换。在检修或校正运行时不检测。

       514 ENC <>VANE: 有一个不正确的平层信号被检测到。

       515 NTSD FAILED: 在正常运行中,正常的停止曲线不能使电梯减速恰好停止在目标楼层。减速时间分成两段,包括一段爬行时间仅用于在端站缓速之用。记录此故障的条件是用 正常运行时错过目标楼层时的速度与正常减速度110%减速曲线运行的速度比较,高于此值则记录此故障。

       516 CORR FAILED: 校正运行丢失位置。当校正运行至端站时超出极限开关或超出桥板,或者根本就不处于预计的端站位置时记录此故障。当电梯停梯时记录此故障。

       517 DDP ERROR:延迟驱动保护故障。经过两个桥板之间的时间超出了设定值。在自学习或检修运行期间不检测。此故障仅在电源倒换或软件复位时清除,通过设定参数DDP SEC来决定时间。

       518 BELTCMP ERR: 在自学习期间关于补偿链和随缆的不平衡的补偿系数有错误。这个补偿系数既不能是复值也不能过大(它的变化范围应该是使电梯在顶层运行与在底层运行的 电机扭矩相差不超过30%)此补偿系数可以查看以下参数:BELTCMP:SLP MA/M,BELTCMP:OFFSET A.

       519 RLVPERMITERR: 在称量系统处于重载情况下控制系统允许再平层,但此状态持续的时间已超过200ms。

       520 RLLBCK START: 在启动运行时反拉车超过5mm。

       521 RLLBCK STOP: 在停车时未达到或超出桥板超过5mm

       522 MANUALRESCUE: 通告SPBC已手动救援运行电梯(电梯断电,由SPBC打开抱闸)。变频器里储存的电梯位置信息作废且下次电梯运行前会重新做锁定转子测试。

       523 MOVED AT POF: SPBC和变频器位置信息矛盾(上电时):变频器会以SPBC的位置为准。

       524 NO ENC SIGNL: 偏码器A信号频道没有检测到。偏码器可能未接好,偏码器供电不正常或编码器已损坏。

       525 NORLV SPDCHK: 再平层速度过高(>=0.285m/s)

       526 NORLV TOOMNY: 连续尝试了20次再平层运行电梯还是不能处于可正常运行的位置。

       527 NORLV LOSTDZ: 丢失DZ信号或检测到UIS/DIS信号门区位置不正确(与平层桥板有几毫米误差导致不能识别平层信号)

       528 PROFILE ERR: 1LS或2LS长度过短(自学习期间)导致电梯不能找到正确位置。此故障可能由于设置的速度曲线速度过大或者开始时加速度过小。另外还可能是LS的磁条 确实过短。

       529 NO ENC FDBCK: 此故障表明电梯有移动但编码器没有反应。当编码器反馈速度低于1mm/s时如果电机电压超过参数NO ENC VTHRS PU值时记录此故障。

       530 NO ENC TMOUT: 此故障表明电梯已运行速度曲线而电机的速度反馈在参数 NO ENC FLT TSEC规定的时间内没有超过1MM/s.

       531 PRS SINGS 1LS: 1Ls的大小写变化位置与自学时测定的1LS大小写转换点位置不一致。

       532 PRS SINGS 2LS: 2LS的大小写变化位置与自学时测定的2LS大小写转换点位置不一致。

       533 ARO OVERSPD: 此故障表明电机速度超过参数ARO OVERSPEED%值。当ARO OVERSPEED%=0时,取消此功能。一旦记录此故障,电梯会发生急停。

       600 INV TMP WARN: 变频器的散热温度已超过80度。

       601 INV TMP OVER: 变频器的散热温度已超过85度。此故障的检测有一定的滞后性,除非温度已低于退出热保温度5度才能退出热保状态。

       602 INV TMP FAIL: 表明在变频器中的热感元件没有连接或已经失败。此时风扇将启动并且直到此故障消除才能停止风扇转动。

       603 CNV TMP WARN: 逆变器的温度已经超过80度。

       604 CNV TMP OVER: 逆变器的散热温度已超过85度。此故障的检测有一定的滞后性,除非温度已低于退出热保温度5度才能退出热保状态。

       605 CNV TMP FAIL: 表明在逆变器中的热感元件没有连接或已经失败。此时风扇将启动并且直到此故障消除才能停止风扇转动。

       606 MTR TMP OVER: 电机温感触点已经改变状态,它表明既有可能是电机温度过高也可能是触点电路有问题,需要检查电机温感触点。尽管电机温感触点可以设为常开或常闭,我们通常选用常闭触点。如果需要温感是常开触点,需要对驱动电路进行相应的修改。

       607 REACTOR TEMP: 线圈中的温感开关断开表明线圈中出现温度过高的现象。

       700 SAFETY CHAIN: 安全链问题,安全链断开会导致SX继电器释放,引起电机和抱闸断电,最终导致急停。

       701 NO MAN INPUT: 此故障仅发出在手动模式或手动模式下跳线已取消时。

       702 PRECHRG TIME: 此故障表明在正常运行中M1的直流吸合电压不够。它一般在初始化几秒后产生。除非再接到MCSS发出的 准备运行命令否则驱动不再试图预先上电。电压 上限为当前交流线电压平方倍的75%。

       703 S RLY FAULT: 常开点S1处于错误的位置。

       704 DBD FAULT: S1,S2,BY1,BY2中的一个或更多的常闭点处于错误的位置,在变频器锁定前允许有三次机会去获得正确的信号。

       705 E2 INVALID: EEPROM中的数据值与当前SCN或新的EEPROM参数不匹配,无效的值或空着的值必须重新设置。

       706 E2 WRITE LIM:允许写入的数据超出了EEPROM的最大值。

       707 ADC OFFSET: ADC的偏移量超过ADC总量的2.9%,或ADC增益偏差大于6.5%。相关电路有可能存在问题。

       708 CMD TO ABORT: 通过OPB命令终止一次运行,每次检修恢复也会记录。

       709 PRS SIGNOISE: 在某一段时间内位置传感器的大小写信号转换过于频繁。

       710 UIB DIB ERR: TCBC型控制柜的运行控制信号中没有UIB,DIB信号.

       711 DBD SHUTDOWN: S1,S2,BY1,BY2中的一个或更多的常闭点处于错误的位置,在变频器锁定前允许有三次机会去获得正确的信号。

       712 POST TRQ TIME: 当电流在规定时间内没有减少到0则记录此故障。

       713 BIOCK BY 000: 完成最后一次运行后电梯进入死机状态,故障等级为S的故障可以引起死机,或者某一种故障发生次数超过允许次数会发生死机。可根据手册4.15.2排除故障。

       714 B_MODE ERR: 当驱动为TANDEM时不适用电池模式错误。

       715 FRAM INVALID: 当GDCB被初化后,不能从FRAM中读取数据。 716 SER FLT: 在第二个变频器中有驱动故障,检查第二个变频器的故障记录。

       717 SCR SAS: 在第二个变频器中有SAS故障,检查第二个变频器的故障记录。

       800 IMS TASK: 当有通讯正常且同步故障时第二个驱动会检测到此类故障。

       801 10ms TASK: 当有通讯正常且同步故障时第二个驱动会检测到此类故障。

       802 40MS TASK: 当有通讯正常且同步故障时第二个驱动会检测到此类故障。

       803 CNV TASK: 当有通讯正常且同步故障时第二个驱动会检测到此类故障。

       804 INV TASK: 当有通讯正常且同步故障时第二个驱动会检测到此类故障。

       900 MCSS TIMEOUT: 80毫秒内没有收到MCSS的通讯。

       901 SVC TOOL ERR: TT接口通讯错误。

       902 CAN ERR: CAN通讯错误被检测到。

       903 E2 COMM WRITE: 在向EEPROM写数据时发生错误。

       904 LWSS TIMEOUT: 变频器没有在规定的时间内收到负载信息。当检测到LW信息后此故障才能清除。

       905 LWSS BAD VAL: 变频器接受的负载信息数值不正确。当检测到LW信息后此故障才能清除。

       906 NO LS MSG: 变频器三秒内没有收到LS信号。

       907 PRIMARY CRC: 变频器要求执行一个主负载的校验运行,且所得值与等效计算的值不一致。

       908 DRIVE CRC: 变频器要求执行一个驱动软件的校验运行,且所得值与等效计算的值不一致。

       909 CAN BUSOFF: 变频器的CAN控制器由于CAN总线或CAN电源造成通讯问题且已经死机。

       910 CAN OPB-INIT: 初始化CAN通讯软件失败。

       911 CAN TXQ FULL: CAN接口的传输数据溢出,传输信息已丢失。

       912 SPBC TIMEOUT: SPBC响应变频器的位置请求超时(超时为200ms)

       913 MCSS WARNING: 检测到MCSS通讯错误。

       914 SEC LNIT ERR: 在初始化完成后主驱动和第二驱动只能进行不超过10秒的SPI通讯,当SPI通讯数据没有更新或错误数据被写入FRAM中,SPI可以保持通讯10秒,可能引起此故障的原因是硬件损坏或设置的参数不正确。如果参数没有完全设好,SPI通讯就不会开始工作,当故障排除后,此故障就自动消除。

       915 SYNCH ERR: 在通讯建立后3秒内没有接到SPI通讯的同步信号,可能由于主驱动重启了,也有可能是抱闸的光学模块损坏或光缆断线了。也有可能是SPI通讯板损坏。当故障排除后,此故障就自动消除。

       916 PRISEE TMOUT: 在通讯建立后,发生了一个校验错误或计数错误。有可能是主驱动或第二驱动重启。还有可能是FRAM有错误。也有可能是抱闸的光学模块损坏或光缆断线了。也有可能是SPI通讯板损坏。当故障排除后,此故障就自动消除。

光伏组件边框接地施工工艺

       光伏电站使用寿命长达25年以上,前提是设备质量及安装工艺规范,其中,接地是十分重要的一个步骤,接地不当会因设备对地绝缘阻抗过低或漏电流过大而报错,影响发电量,甚至还可能会危害人身安全。那么,光伏电站应该如何正确接地呢

       一、组件侧接地

       1、组件边框接地

       很多人认为组件与支架均为金属体,直接接触导通,只要做了支架的接地处理就不用再做组件的了。实际上组件铝边框与镀锌支架或铝合金支架都做了镀层处理,满足不了接地要求。而且组件存在着老化问题,可能产生漏电流过大或者对地绝缘阻抗过低问题,如果边框不接地,几年之后,逆变器很可能报相应的故障导致系统不能正常发电。

       组件与组件之间的连接

       组件与支架之间的连接

       2、组件支架接地

       光伏组件的防雷接地电阻要求应小于10Ω,逆变器和配电箱接地电阻应小于4Ω。对于达不到接地电阻要求的,通常采用添加降阻剂或选择土壤率较低的地方埋入。

       组件及支架防雷接地圆钢

       二、逆变器侧接地

       1.工作接地

       一般工作接地(PE端)接到配电箱里的PE排上,再通过配电箱做接地。

       逆变器PE端

       2.保护接地

       逆变器机身的右侧有一个接地孔是做重复接地,保护逆变器和操作人员的安全。

       逆变器接地展示图

       三、配电箱侧接地

       1、防雷接地

       交流侧防雷保护一般由熔断器或断路器和防雷浪涌保护器构成,主要对感应雷电或直接雷或其他瞬时过压的电涌进行保护,SPD的下端接到配电箱的接地排上

       2、箱体接地

       根据《建筑电气工程施工质量验收规范》6.1.1柜、屏、台、箱、盘的金属框架及基础型钢必须接地(PE)或接零(PEN)可靠;装有电器的可开启门,门和框架的接地端子间应用黄绿色铜线连接。

       配电箱的柜门与柜体要做跨接线,保证可靠接地,如下图所示:

       配电箱的柜门与柜体的连接

       光伏电站需从组件侧、逆变器侧、配电箱侧三个方面做好系统的接地,减少后期不必要的运维,以保障系统稳定安全高效的运行。

平地也会有雷击 光伏电站需要采取哪些

       雷的电能会破坏电气设备的绝缘性能,损坏设备的功能。

       引起绝缘破坏的是“雷电涌”。因雷击影响瞬间发生的过压和过流称为“雷电涌”。

       有种保护电气设备免受雷电涌损坏的方法,是用电涌防护器件(SPD),也称为“浪涌吸收器”等(图2)。可用于光伏发电系统,大型企业制造的PCS等几乎都标配该元件。

       光伏电站是在室外设置发电设备。既然在室外设置,就需要采取避雷对策。

       日本对雷的一般印象是“高处会遭雷击”。但该公司说,平地也会遭雷击。

       尤其是百万瓦级光伏电站,因占地面积大,估计遭遇雷击的可能性不小。日本的光伏电站没有普及避雷针是因为,很多运营商想尽量避免在对发电没有贡献的设备上投入成本,而且避雷针的影子会投射到太阳能电池板上,造成发电损失。

       作为避免影子的方法,有受雷部不使用避雷针,而是采用“水平导体”的方法。

       水平导体的作用与避雷针相同:在发生雷击时,可吸引雷电并将其安全释放到地面,从而避免保护对象直接被雷击。但其是由厚度最小仅数mm的金属部件(厚度因材质而异)构成的,安装在要避免雷击的构造物上使用,没有避雷针那么高。

       避雷针和避雷导体只不过是避免建筑和构造物受到物理损伤的方法

       说到雷击对策,人们首先会想到避雷针。利用顶端尖尖的金属棒引导雷电,再经接地导线,使雷的电能向地下放电。

       高度在20m以上的建筑按规定都必须设置避雷针。占地内没有这类建筑的光伏电站,则没有规定要求必须设置避雷针。

       因此,日本在占地内设置避雷针的光伏电站很少

防雷工程报价明细

       导语:雷电是一种自然现象,目前,人类还是无法避免的,但是可以通过某种手段进行预测,从而做好防护措施。防雷工程就是因防雷需要而设计到的一些工程,这种工程很大程度上可以保障人身安全,防止受到雷电的伤害。这篇文章就主要向大家介绍了防雷工程的概况,也提供了具体一些工程的报价单,提供大家作为参考,下面就跟随小编一起去看看吧。

       防雷工程即指因防雷需要而涉及到的所有工程。防雷工程包括:外部防雷和内部防雷。外部防雷通俗的讲,即防直击雷;内部防雷指防感应雷。外部防雷最直接的目的即保护人身安全,内部防雷则是保护设备不受雷击。

       雷电防护设计是一项系统工程,系统结构愈合理,系统的各个部分之间才可以有机结合,相互之间的作用就愈协调,从而使整个系统在总体上达到最佳的运行状态。在系统防雷保护设计工作中,防雷设计主要的目的是将防雷与计算机信息系统的客观实际条件进行有机的结合,通过合理配置,使之溶为一体,确保系统的稳定工作,从而发挥出系统防护工作的最佳效果。

       防雷体系概况

       由接闪器、避雷器件、均压等电位体、接地装置等构成的工程网络称为综合防雷工程系统。技术先进是安全的有效保证,在保证安全的前提下对设计提出了更加严格的要求。一个完善的防雷体系应包括三方面内容:

       1、外部防雷,即由外部防雷装置(接闪器、引下线和接地装置)承接50%以上的雷电流泄入大地;

       2、内部防雷,即采用等电位连结、屏蔽、防闪络技术和装置阻塞雷电波沿金属导线和空间电磁场入侵的途径;

       3、电涌保护,利用某些元件的非线性特性,组成电涌保护器(SPD)并将其连结在配电和信号线路中,将累计产生的过电压和过电流通过SPD泄入大地。

        防雷工程报价

       LED大功率路灯头防水防雷工程品质三年质保265元

       河南学校防雷工程WJA40-DC电源防雷器1999元

       防雷浪涌保护器,配电浪涌,防雷工程,防雷施工,BTBC25999元

       供应高品质36个月质保期5000W防雷工程设备专用纯正弦波逆变器4870元

       以上价格仅供参考,实际价格可能有所出入

       好了,说到这里,小编对于防雷工程的大致信息就介绍得差不多了,既然雷电我们无法避免,那么就得想办法去预防,让人类的生命和财产少受点损失。如今,防雷工程更是与计算机连为一体,做到防护的最大效果,不同的防雷工程的报价因工程的难易也是不同的。如果大家还有什么问题的话或者想继续了解,可以向小巴咨询,小巴会随时给予答复哦。

       土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:/yezhu/zxbj-cszy.phpto8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~

如何降低雷电对光伏电站的影响

       首先,应该在太阳能电池方阵的直流输入线路安装直流避雷器,根据线路长度和工作电压选用标称放电电流≥10kA适配的SPD该浪涌保护器内部应包括差模滤波器,以帮助消除线路上传导的电磁干扰,在光伏电站的交流输出供电线路上安装交流避雷器。

       其次,由于控制器和逆变器均为价格昂贵的设备,应在控制器和逆变器内安装第2级的电源浪涌保护器,使其具有防雷保护功能。如果逆变器输出到一些较重要的负载设备,还应该在逆变器输出端安装第3级电源浪涌保护器。电源系统和电子系统安装多级SPD时还需考虑多级匹配问题。

       雷电会对建筑物及电气设备造成严重破坏。在独立光伏电站的防雷设计中。应当选择合理的设计方案,采取有效的措施.做好独立光伏电站的防雷设计。防止直击雷、感应雷、雷电波对独立光伏电站设备的破坏,这样才能保证独立光伏电站长期稳定、安全、可靠地运行,为用户提供优质的电能。

UPS电源如何做到正确防雷以及避雷器的选型?

       直击雷、感应雷和雷电电磁脉冲等都有可能对UPS电源造成损害,因此要做好UPS的防雷就必须严格遵守《建筑物电子信息系统防雷技术规范》综合防雷系统的要求,做好以下几点:

       1、要将外部防雷措施和内部防雷措施统筹兼顾,全面规划,切实做好接地和等电位连接。完善设备所在建筑物外部防雷系统,按照国标《建筑物防雷设计规范》(GB50057-94(2000年版)),安装接闪器,引下线以及防雷接地网等设施。做好机房接地,根据国标《电子计算机房设计规范》(GB50174-1993),交流工作地、直流工作地、安全保护地、防雷接地宜共用一组接地装置,其接地电阻按其中最小值要求确定;如果必须分设接地,则必须于两地之间加装等电位共地联结器。

       2、要采取多级防护措施。所谓多级防护就是按照电磁兼容的原理,分层次地对雷电流进行削弱,在动力线进户配电柜、楼层配电柜以及机房进户配电盒,安装适配的避雷器。对于有信号或通信接口的UPS,为防止雷电波从信号或通信线引入,必须在信号或通信线接口处加装相应的信号避雷器。雷电防护的中心内容是泄放和均衡,泄放将雷电流尽可能多的、尽可能远的是泄放于地,而拒之于通信系统之外。均衡是减小雷电流在诸导电物体上产生的电位差,防止雷电流的反击。

       3、UPS电源的安装位置要讲究。依据国际电工委员会ICE1312一1((雷电电磁脉冲的防护》的建筑物分区方法,UPS电源机房属LPZ1区,在本区内的物体不可能遭受直接雷击,在本区内的电磁场有可能衰减。就是UPS电源应安装在LPZ1区内,同时,为防范雷电流产生的强电磁场*,UPS电源放置离墙应有一定的距离,与外墙立柱钢筋引下线的距离≥0.83m,即设备处在雷电流磁场的安全区内。并把机器外壳屏蔽接地,机柜门用导线与地加强连接,机柜内成为LPZ2区。

       避雷器应选用质量可靠,性能优良,并经相关部门备案的产品。

       1、选择SPD,要满足以下三条基本要求:1)安装SPD之后,在无电涌发生时,SPD不应对电气(电子)系统正常运行产生影响。2)安装SPD之后,在有电涌发生的情况下,SPD能承受预期通过的雷电流而不损坏,并能箝制电涌电压和分走电涌电流。3)在电涌电流通过后,SPD应迅速恢复高阻状态,切断工频续流。

       2、一般,将SPD安装在被保护设备以及UPS前端,SPD所有连接导线应尽可能短,特别是接地线,其长度不宜大于0.5m.所有连线应规整,平直,线径应符合表4-1的要求

光伏专用防雷直流与交流有什么区别

       在光伏的避雷器(SPD:电涌保护器)中,直流电及交流电的防雷区别与SPD的要求不同,主要有以下两点:

       1、当SPD过载而短路,SPD内部的脱扣等保护装置会出现断开而产生电弧现象。如果是交流电,则由于电压过零电弧会自动熄灭;如果是直流电,则不能自动熄灭电弧,并会引起SPD起火;

       2、整个光伏系统就如同一个电流源,所以短路电流与平时工作额定电流基本等同。但是交流电源却等同于电压源,当出现短路时,根据原理,输出的电流会非常大,所以在防雷保护设备选择上,会出现较大区别。

       注意:SPD后备保护设备通常会选择熔断器,主要目的是为了防止SPD短路后起火,所以要将它从电路中断离开。

为何防雷器前面会加保险丝?

       防止SPD发生短路电流故障和过载时使SPD发生爆炸燃烧。

        目前SPD前面串接熔丝或者空开并没有强制性的规范,而且对于熔丝或者空开的额定电流选择也没有具体的要求,目前容量的选择大多数是SPD厂家推荐的——基于熔丝的雷电流熔断考虑(熔丝的容量和SPD的放电电流的大小有关,通流量越大,熔丝越大,保证过电流能顺利通过熔丝、SPD泄放入地而熔丝不会被熔断);但是与国内的一些电气规范要求的容量(1:1.6)相矛盾——基于工频电流熔断的考虑(SPD发生故障时,系统的电流必须保证能把SPD前面的熔丝熔断,故熔丝的额定容量不会太大,这样选择的后果时,雷电流经过后备熔丝时可能会把熔丝熔断而导致SPD无法起到保护作用),因此,作为一个矛盾的东西,无法解决短路电流和雷电流熔断的矛盾问题。基于目前传统SPD的内部结构,必须要加后备保护装置,目的是当SPD发生故障时必须保证SPD从电网中脱离,防止SPD长时间通过短路电流而发生火灾事故,但是当短路电流小于熔丝的额定工作电流时,并不能保证SPD安全脱离电网;

       对于我们TC(G)技术的SPD,由于采用了特殊的结构可以不用加装后备保护装置,并且保证SPD故障时准确脱扣,并且与电网脱离;

        由于目前国内及部分进口SPD的脱扣点还处于人工焊接的阶段,加之MOV的工艺水平有限,无法保证SPD在发生故障时能及时准备地脱扣,把SPD从电路中隔离开来,因此在SPD前面串接了熔丝,企图想靠前置的熔丝把SPD从电网中隔离开,但是实际情况并不是这样的。SPD由于暂态过电压或者老化发生短路故障时,短路电流的大小不能预知,这与整个系统的电流大小和MOV的短路程度有关,如果短路电流小于熔丝的额定电流,那么熔丝将无法熔断,仍然会引发SPD的火灾。而且熔丝的选择中会遇到雷电流熔断和工频电流熔断不相容的问题。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言