Hubei Xiantong Technology Co., Ltd.
WhatsApp:+86 13997866467
Email:qitianpower@outlook.com

逆变器vdif电路

发布时间:2024-06-23 15:20:13 人气:

中频电路的作用

       通过改变交流电频率的方式实现交流电控制的技术就叫变频技术

       另一种方法是改革变流器的工作机理,做到既抑制谐波,又提高功率因数,这种变流器称单位功率因数变流器。

       大容量变流器减少谐波的主要方法是采用多重化技术:将多个方波叠加以消除次数较低的谐波,从而得到接近正弦的阶梯波。重数越多,波形越接近正弦,但电路结构越复杂。

       几千瓦到几百千瓦的高功率因数变流器主要采用PWM整流技术。它直接对整流桥上各电力电子器件进行正弦PWM控制,使得输入电流接近正弦波,其相位与电源相电压相位相同。这样,输入电流中就只含与开关频率有关的高次谐波,这些谐波次数高,容易滤除,同时也使功率因数接近1。采用PWM整流器作为AC/DC变换的 PWM逆变器,就是所谓的双PWM变频器。它具有输入电压、电流频率固定,波形均为正弦,功率因数接近1,输出电压、电流频率可变,电流波形也为正弦的特点。这种变频器可实现四象限运行,从而达到能量的双向传送。

       小容量变流器为了实现低谐波和高功率因数,一般采用二极管整流加PWM斩波,常称之为功率因数校正(PEC)。典型的电路有升压型、降压型、升降压型等。

       (2)电磁干扰抑制解决EMI的措施是克服开关器件导通和关断时出现过大的电流上升率di/dt和电压上升率du/dt,目前比较引入注目的是零电流开关(ZCS)和零电压开关(ZVS)电路。方法是:

       ①开关器件上串联电感,这样可抑制开关器件导通时的di/dt,使器件上不存在电压、电流重叠区,减少了开关损耗;

       ②开关器件上并联电容,当器件关断后抑制du/dt上升,器件上不存在电压、电流重叠区,减少了开关损耗;

       ③器件上反并联二极管,在二极管导通期间,开关器件呈零电压、零电流状态,此时驱动器件导通或关断能实现ZVS、ZCS动作。

       目前较常用的软开关技术有:

       ①部分谐振PWM。为了使效率尽量与硬开关时接近,必须防止器件电流有效值的增加。因此,在一个开关周期内,仅在器件开通和关断时使电路谐振,称之为部分谐振。

       ②无损耗缓冲电路。串联电感或并联电容上的电能释放时不经过电阻或开关器件,称无损耗缓冲电路,常不用反并联二极管。

       在电机控制中主开关器件多采用 IGBT,IGBT关断时有尾部电流,对关断损耗很有影响。因此,关断时采用零电流时间长的ZCS更合适。

       2、功率因数补偿早期的方法是采用同步调相机,它是专门用来产生无功功率的同步电机,利用过励磁和欠励磁分别发出不同大小的容性或感性无功功率。然而,由于它是旋转电机,噪声和损耗都较大,运行维护也复杂,响应速度慢,因此,在很多情况下已无法适应快速无功功率补偿的要求。

       另一种方法是采用饱和电抗器的静止无功补偿装置。它具有静止型和响应速度快的优点,但由于其铁心需磁化到饱和状态,损耗和噪声都很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负载的不平衡,所以未能占据静止无功补偿装置的主流。

       收音机变频原理:

       所谓“变频”,就是通过一种叫“变频器”的电路,将接收到的电台信号变换成一个频率比较低但节目内容一样的“中频”,然后对“中频”进行放大和“检波”(取出电台高频信号中携带的音频信号[“表示声音的电信号”],供收听)。

       因为中频比电台信号频率低(现在有些机器的中频比电台信号频率高,另当别论),放大容易,不容易引起自激,灵敏度高,且可以针对固定的中频做很多的“调谐回路”,选择性好。带有自动增益(放大倍数)控制电路(即所谓的AGC),使强、弱电台的音量差距变小。

光耦的应用场合

       (1) 在逻辑电路上的应用

       光电耦合器可以构成各种逻辑电路,由于光电耦合器的抗干扰性能和隔离性能比晶体管好,因此,由它构成的逻辑电路更可靠。

       (2) 作为固体开关应用

       在开关电路中,往往要求控制电路和开关之间要有很好的电隔离,对于一般的电子开关来说是很难做到的,但用光电耦合器却很容易实现。

       (3) 在触发电路上的应用

       将光电耦合器用于双稳态输出电路,由于可以把发光二极管分别串入两管发射极回路,可有效地解决输出与负载隔离地问题。

       (4) 在脉冲放大电路中的应用

       光电耦合器应用于数字电路,可以将脉冲信号进行放大。

       (5) 在线性电路上的应用

       线性光电耦合器应用于线性电路中,具有较高地线性度以及优良地电隔离性能。

       (6) 特殊场合的应用

       光电耦合器还可应用于高压控制,取代变压器,代替触点继电器以及用于A/D电路等多种场合。

       线性光耦合器的选取原则

       在设计光耦反馈式开关电源时必须正确选择线性光耦合器的型号及参数,选取原则如下:

        ①光耦合器的电流传输比(CTR)的允许范围是50%~200%。这是因为当CTR<50%时,光耦中的LED就需要较大的工作电流 (IF>5.0mA),才能正常控制单片开关电源IC的占空比,这会增大光耦的功耗。若CTR>200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。

       ②推荐采用线性光耦合器,其特点是CTR值能够在一定范围内做线性调整。

        ③由英国埃索柯姆(Isocom)公司、美国摩托罗拉公司生产的4N××系列(如4N25 、4N26、4N35)光耦合器,目前在国内应用地十分普遍。鉴于此类光耦合器呈现开关特性,其线性度差,适宜传输数字信号(高、低电平),因此不推荐用在开关电源中。

       3 线性光耦合器应用举例

       多路输出式电源变换器电路如图3所示。其输入电压为36V到90V的准方波电压,三路输出分别为:UO1=+5V(2A),UO2=+15V(0.17A),UO3=-15V(0.17A)。现将UO1定为主输出,其电压调整率 SV=±0.4%;UO2和UO3为辅输出,总电源效率可达75%~80%。电路中采用一片TOP104Y型三端单片开关电源集成电路。主输出绕组电压经过VD2、C2、L1和C3整流滤波后,得到+5V电压。VD2采用MBR735型35V/7.5A肖特基二极管。两个辅输出绕组及输出电路完全呈对称结构。因为±15V输出电流较小,故整流管VD4和VD5均采用UF4002型100V/1A的超快恢复二极管。由线性光耦CNY17-2和可调式精密并联稳压器TL431C构成光耦反馈式精密开关电源,可以对+5V电压进行精密调整。反馈绕组电压通过VD3、C4整流滤波后,得到12V反馈电压。由 P6KE120型瞬态电压抑制器和UF4002型超快恢复二极管构成的漏极钳位保护电路,能吸收由高频变压器漏感形成的尖峰电压,保护芯片内部的功率场效应管MOSFET不受损坏。

       外部误差放大器由TL431C组成。当+5V输出电压升高时,经R3、R4分压后得到的取样电压,就与TL431C中的2.5V带隙基准电压进行比较,使其阴极电位降低,LED的工作电流IF增大,再通过线性光耦IC2(CNY17-2)使控制端电流IC增大,TOP104Y的输出占空比减小,使UO1维持不变,达到稳压目的。+5V稳压值UO1则由TL431C、光耦中的LED正向压降来设定。R1是LED的限流电阻。误差放大器的频率响应由C5、R2 和C6来决定。C5的作用有三个:滤除控制端上的尖峰电压;决定自动重启动频率;与R2一起对控制回路进行补偿。

二极管有几种类型

       主要分类

       点接触型二极管

       点接触型二极管的PN结接触面积小,不能通过较大的正向电流和承受较高的反向电压,但它的高频性能好,适宜在高频检波电路和开关电路中使用。

       面接触型二极管

       面接触型二极管的PN结接触面积大,可以通过较大的电流,也能承受较高的反向电压,适宜在整流电路中使用。

       平面型二极管

       平面型二极管在脉冲数字电路中作开关管使用时PN结面积小,用于大功率整流时PN结面积较大。

       稳压管

       稳压管是一种特殊的面接触型半导体硅二极管,具有稳定电压的作用。稳压管与普通二极管的主要区别在于,稳压管是工作在PN结的反向击穿状态。通过在制造过程中的工艺措施和使用时限制反向电流的大小,能保证稳压管在反向击穿状态下不会因过热而损坏。

       稳压管与一般二极管不一样,它的反向击穿是可逆的,只要不超过稳压管电流的允许值,PN结就不会过热损坏,当外加反向电压去除后,稳压管恢复原性能,所以稳压管具有良好的重复击穿特性。

       光电二极管

       光电二极管又称光敏二极管。它的管壳上备有一个玻璃窗口,以便于接受光照。其特点是,当光线照射于它的PN结时,可以成对地产生自由电子和空穴,使半导体中少数载流子的浓度提高,在一定的反向偏置电压作用下,使反向电流增加。因此它的反向电流随光照强度的增加而线性增加。

       当无光照时,光电二极管的伏安特性与普通二极管一样。光电二极管作为光控元件可用于各种物体检测、光电控制、自动报警等方面。当制成大面积的光电二极管时,可当作一种能源而称为光电池。此时它不需要外加电源,能够直接把光能变成电能。

       发光二极管

       发光二极管是一种将电能直接转换成光能的半导体固体显示器件,简称LED(Light Emitting Diode)。和普通二极管相似,发光二极管也是由一个PN结构成。发光二极管的PN结封装在透明塑料壳内,外形有方形、矩形和圆形等。发光二极管的驱动电压低、工作电流小,具有很强的抗振动和冲击能力、体积小、可靠性高、耗电省和寿命长等优点,广泛用于信号指示等电路中。

       在电子技术中常用的数码管,发光二极管的原理与光电二极管相反。当发光二极管正向偏置通过电流时会发出光来,这是由于电子与空穴直接复合时放出能量的结果。它的光谱范围比较窄,其波长由所使用的基本材料而定。

如何降低UPS损耗

       1、降低器件损耗

       高频UPS用到的半导体主要为IGBT (Insulated Gate Bipolar Transistor),二极管以及MOSFET。由于自身结构和工作特性不同,器件损耗构成各有不同:

       (1)IGBT

       IGBT的损耗是由导通损耗和开关损耗构成。

       导通损耗等于导通电流ICE和正向导通压降VCE的乘积:

       Pconduct loss-IGBT =VCE-on* ICE

       开关损耗:

       PTurn on- loss-IGBT =Eon* Fsw

       PTurn off- loss-IGBT =Eoff* Fsw

       IGBT的开关损耗分为开通和关断损耗,可以用单次关断的损耗(Eon或Eoff)乘以开关频率Fsw。

       所以如果要降低IGBT损耗,就需要选择导通压降比较低,开关损耗比较小的型号。由于通常导通压降低和开关损耗小无法同时选择,所以需要判断实际电路中导通损耗比较大还是开关损耗比较大,然后选择收益最大的一个方向挑选IGBT。

       随着半导体技术的发展,IGBT也逐渐呈现高效化的趋势,新一代的IGBT通常比上一代损耗更低,所以优先挑选采用最新技术的IGBT也是降低损耗的一个常用手法。

       注:部分线路中IGBT的反并联二极管也会产生损耗,选择IGBT时也需要注意二极管特性。

       (2)二极管

       在UPS中会使用较多的功率二极管,按照电路工作的频率,二极管被区分为高频二极管和整流(工频)二极管,两种二极管的损耗略有差异,本文主要讨论高频二极管的情况。

       高频二极管的损耗主要由导通损耗和开关损耗构成;

       导通损耗等于正向导通电流IF和正向导通压降VF的乘积:

       Pconduct loss-diode-REC =VF* IF

       开关损耗主要是由二极管的反向恢复电流引起的:

       Pleakage-diode-REC=Ileakage-diode-REC*Vdiode-REC

       其中,VR是二极管的反向电压,Qrr是二极管的反向恢复电荷(Reverse recovery charge), Fsw是电路的开关频率。

       二极管的总损耗:

       Ploss-diode-REC= Pconduct loss-diode-REC+ Pleakage-diode-REC

       如上式所示,如果要降低高频二极管的损耗,需要挑选导通压降小和反向恢复快的二极管。如果工作频率很高,可以考虑使用碳化硅二极管(反向恢复损耗极小)以降低器件损耗。

       (3)功率电感

       功率电感的损耗由磁芯损耗和线圈损耗组成。磁芯损耗分为磁滞损耗,涡流损耗和剩余损耗,UPS一般工作频率不高,大部分在20KHz左右,磁芯损耗主要由磁滞损 耗和涡流损耗构成,通常磁芯供应商的拟合损耗曲线会包含这些损耗。以CSC sendust 26u磁芯为例,上图就是损耗的拟合公式,先计算出B,再代入工作频率即可得到单位体积的损耗。按照下图的公式,降低B能有效降低磁芯损耗,即可以选择增大磁路截面积或提高频率,降低工作电压等措施来降低磁芯损耗。

       例如:以CSC铁硅铝 26u的磁芯为例,如果将磁芯的截面积增加25%,其他条件不变,则B会降低25%,磁芯损耗则会降低45%。

       线圈损耗是有电流在导线上流过产生的。通常流过电感的电流包括工频或直流的低频电流和开关频率的高频电流。由于集肤效应的存在,开关频率较高时线圈的交流阻抗会大于直流阻抗,所以设计时如果开关频率较高需要将多股细线并绕来降低集肤效应的影响。

       (3)风扇

       风扇的损耗主要来自电机,通常电机的损耗和转速的立方成正比,所以在不同负载段适当调整风扇转速,可以适当将各负载段的风扇损耗。

       2、降低拓扑损耗

       除了以上讨论的降低器件损耗外,通过优化UPS的拓扑结构也可以降低损耗。

       在UPS领域,多电平拓扑都大量的应用。相对于以前使用的两电平拓扑,现在常用的二极管箝位型三电平拓扑与传统两电平拓扑逆变器相比,可以减小滤波电感的尺寸和损耗。粗略损耗分析如下:

       (1)三电平损耗分析

       二极管箝位型三电平逆变器拓扑。电路主要损耗为开关器件的导通损耗、开关损耗以及输出滤波电感损耗。因三相电路3个桥臂的损耗相同,为便于计算,基于A相单相桥臂进行损耗分析。

       A相桥臂开关 VS1~VS4的驱动信号 ugVS1~ugVS4与输出电压uo、电流io关系示意图。开关动作情况可根据uo,io的方向分为Ⅰ,Ⅱ,Ⅲ,Ⅳ 4 个区域。ugVS1~ugVS4与uo,io的关系由上图可见,在Ⅰ区域中,io方向为负,即流入变换器。当输出高电平时VD1,VD2导通;当输出零电平时VD5,VS3导通。忽略io在一个开关周期中的变化则Ⅰ区域中逆变器单相半导体器件损耗功率为:

       PⅠ=f(EswⅠ+EconⅠ++EconⅠ0)

       式中:EswⅠ为Ⅰ区域器件消耗的总开关损耗能量;EconⅠ+为Ⅰ区域输出高电平时器件消耗的总导通损耗能量;EconⅠ0为Ⅰ区域输出零电平时器件消耗的总导通损耗能量;f为输出电压频率。在Ⅱ区域中,io方向为正,即流出变换器。当输出高电平时VS1,VS2导通,输出零电平时VD6,VS2导通。Ⅱ区域导通器件示意图忽略io在一个开关周期中的变化,则Ⅱ区域中逆变器单相半导体器件损耗功率为:

       PⅡ=f(EswⅡ+EconⅡ++EconⅡ0)

       式中:EswⅡ为Ⅱ区域器件消耗的总开关损耗能量;EconⅡ+为II区域输出高电平时器件消耗的总导通损耗能量;EconⅡ0为Ⅱ区域输出零电平时器件消耗的总导通损耗能量。

       分析可知,Ⅲ区域与Ⅰ区域,Ⅳ区域与Ⅱ区域分别为对偶关系,所以Ⅲ区域的器件损耗与Ⅰ区域相同,Ⅳ区域的器件损耗与Ⅱ区域相同,故三电平逆变器三相半导体器件总损耗功率为:

       ① Ptotal=3(PⅠ+PⅡ+PⅢ+PⅣ)=6(PⅠ+PⅡ)

       (2)两电平损耗分析

       同样根据uo和io的方向,将开关动作情况分为Ⅰ,Ⅱ,Ⅲ,Ⅳ 4 个区域,则两点平逆变器三相半导体总器件损耗功率可表示为:

       ② Ptotal*=3(PⅠ*+PⅡ*+PⅢ*+PⅣ*)=6(PⅠ*+PⅡ*)

       各分量计算与三电平对应,但修改相应的损耗参数。

       十二:两电平逆变器

       对比上述① ② 公式,用Mathcad软件可算出三电平和两电平逆变器在相同给定应用条件下的损耗和效率。

       按照以下给定值计算:三电平逆变器以IGBT为开关器件,型号为2MBI300U2B-060(600 V/300 A),二极管VD5和VD6型号为1FI150B-060(600V/200 A);两电平逆变器所用IGBT型号为:

       2MBI300UC-120(1 200 V/300 A);两种拓扑逆变器驱动电阻Rg=5 Ω,工作温度Tj=125 ℃。

       理论计算当fs=10 kHz时,三电平逆变器效率可提高1.7%;当fs=20 kHz,三电平逆变器效率可提高2.79%。

       可以看出,选择更优的拓扑可以显著提高效率。

       3、降低系统损耗

       降低系统损耗,从根本上来说,就是保证UPS始终工作在效率最高区间。考虑到UPS的初期投资,可以选用模块化UPS达成这一目的。选用模块化的优点如下。

       (1)、按需扩容

       模块化一大优势在于可在线扩容,这种设计使得客户不必过于超前规划UPS系统的容量,而是可以在适合的范围内接近负载容量,从而达到最好的效率点。

       (2)、模块冗余

       UPS系统的可靠性是客户非常看重的指标。一般来说,N+1冗余系统可以满足大部分应用场景的可靠性需求,也是性价比最高的配置方式。一般塔式系统采用N+1只保证了可靠性,但是会导致初期投资较高,并且也会让负载率低于50%,采用模块化机器则不会有这个问题。

       (3)、智能休眠功能

       图十四:智能休眠

       模块化UPS一般具有智能休眠功能,采用这个功能可有效改善因低载带来的低效现象。UPS将根据目前所处负载情况,在留有冗余的前提下,休眠1-2个模块,从而提升其他工作中机器的负载率,使得系统效率得以提升。且原有系统负载率越低,节能效果越显著。以负载率为20%的3+1模块冗余系统为例,通过智能休眠功能,系统将休眠2个模块,使得剩余2台机器负载率达到40%,且这种情况下UPS系统仍保留冗余,即保障1台机器故障时,剩余1台机器仍可正常带载运行。仍以500kW负载为例,空调EER=3:1,休眠前后的节能对比见下:

       如今业界UPS最高效率普遍可以达到96%甚至更高,但是提升UPS效率仍然是整个业界一直持续追求的,选用优质器件,更优的拓扑是提升UPS效率的可靠途径,同时模块化UPS智能休眠等特性可以让UPS工作在最佳效率区间。

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言