发布时间:2024-06-19 13:00:18 人气:
最简单的逆变器电路
最简单的逆变器电路:
下图是一个简单逆变器的电路图.其特点是共集电极电路,可将三极管的集电极直接安装在机壳上,便于散热.不易损坏三极管.,我的简单逆变器用了十多年了,没出现过一次烧管的事.现给大家介绍一下制作方法.
变压器的制作:
可根据自己的需要选用一个机床用的控制变压器.我用的是100W的控制变压器.将变压器铁芯拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的漆包线,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个4V的线圈为反馈线圈,线圈的层间用较厚的牛皮纸绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的.
可换一下接头.这样变压器就做好了. 电阻的选择.两个与4V线圈串联的电阻可用电阻丝制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由
于管子的参数不一致有时不起振,最好接一个. 三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了. 接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻.
调整完毕后就可以正常使用了. 我的逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.
逆变器制作?
下图是一个简单
逆变器
的电路图.其特点是
共集电极电路
,可将三极管的集电极直接安装在机壳上,便于散热.不易损坏三极管.
变压器的制作:可根据自己的需要选用一个机床用的
控制变压器
.我用的是100W的控制变压器.将
变压器铁芯
拆开,再将次级线圈拆下来.并记录下每伏圈数.然后重新绕次级线圈.用1.35mm的
漆包线
,先绕一个22V的线圈,在中间抽头,这就是主线圈.再用0.47的漆包线线绕两个
4V
的线圈为反馈线圈,线圈的层间用较厚的
牛皮纸
绝缘.线圈绕好后插上铁芯.将两个4V次级分别和主线圈连在一起,注意头尾的别接反了.可通电测电压.如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的.可换一下接头.这样变压器就做好了.
电阻的选择.两个与4V线圈串联的电阻可用
电阻丝
制作.可根据输出功率大小选择电阻的大小,一般的几个欧姆.输出功率大时,电阻越小,偏流电阻用1W的300欧姆的电阻.不接这个电阻也能工作.但由于管子的参数不一致有时不起振,最好接一个.
三极管的选择:每边用三只3DD15并联.共用六只管子.电路连接好后检查无错误,就可以通电调整了.
接上蓄电池,找一个100W的白炽灯做负载.打开开关,灯泡应该能正常发光.如果不能正常发光,可减小基极的电阻.直到能正常发光为止.再接上彩电看能否正常启动.不能正常启动也是减小基极的电阻.调整完毕后就可以正常使用了.
我的逆变器和充电器做在了一个机壳内,输出并联在了家里的交流电源上.并安装上了继电器,停电时可自动切换为逆变器供电,并切断外电路,来电时自动接上交流电切断逆变器供电并转入充电状态.如果没有停电来电状态指示灯的话,停电来电时无感觉.
纯电动汽车逆变器的作用
1. 逆变器的作用
逆变器的作用 逆变器的功能或用处
逆变器(inverter)是把直流电能(电池、蓄电瓶)转变成交流电(一般为220v50HZ正弦或方波)。
应急电源,一般是把直流电瓶逆变成220V交流的。 通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。
它由逆变桥、控制逻辑和滤波电路组成. 利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只 60V/30A的MOS FET开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下: 第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。
此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。在它激逆变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。
该逆变器采用容量为400VA的工频变压器,铁芯采用45*60mm2的硅钢片。初级绕组采用直径1.2mm的漆包线,两根并绕2*20匝。
次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕400匝。
开关管VT4~VT6可用60V/30A任何型号的N沟道MOS FET管代替。VD7可用1N400X系列普通二极管。
该电路几乎不经调试即可正常工作。当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选择,或用10kΩ电位器调整,使输出电压为额定值。
如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。
建议选用100V/32A的2SK564,或选用三只2SK906并联应用。同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS-600中变压器代用。
如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。 1. 问:什么是逆变器,它起什么作用? 答:简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。
因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。我们处在一个“移动”的时代,移动办公,移动通讯,移动休闲和娱乐。
在移动的状态中,人们不但需要由电池或电瓶供给的低压直流电,同时更需要我们在日常环境中不可或缺的220伏交流电,逆变器就可以满足我们的这种需求。 2. 问:按输出波形划分,逆变器分为几类? 答:主要分两类,一类是正弦波逆变器,另一类是方波逆变器。
正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。
同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。
针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。
准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。
3. 问:何谓“感性负载”? 答:通俗地说,。
逆变器是干什么用的
逆变器的作用:把直流电能(电池、畜电瓶)转变成交流电。
逆变器由逆变桥、控制逻辑和滤波电路组成。
知识点延伸:
完整的逆变电路,除了主逆变电路外,还要有控制电路、输入电路、输出电路、辅助电路和保护电路等构成。
各部分电路的主要功能如下:
(1) 输入电路: 为主逆变电路提供可确保其正常工作的直流电压。
(2) 输出电路: 对主逆变电路输出的交流电的质量(包括波形、频率、电压电流幅值相位等)进行修正、补偿、调理,使之能满足用户要求。
(3) 控制电路: 为主逆变电路提供一系列的控制脉冲来控制逆变开关管的导通和关断,配合主逆变电路完成逆变功能。在逆变电路中,控制电路与主逆变电路同样重要。
(4) 辅路电路: 将输入电压变换成适合控制电路工作的直流电压。包括多种检测电路。
(5) 保护电路: 输入过压、欠压保护;输出过压、欠压保护;过载保护;过流和短路保护;过热保护等。
(6) 主逆变电路: 由半导体开关器件组成的变换电路,分为隔离式和非隔离式两大类。如变频器、能量回馈等都是非隔离的;UPS、通信基础开关电流等是隔离式逆变电路。
整流器详细资料大全
整流器(英文:rectifier)是把交流电转换成直流电的装置,可用于供电装置及侦测无线电信号等。整流器可以由真空管,引燃管,固态矽半导体二极体,汞弧等制成。相反,一套把直流电转换成交流电的装置,则称为“逆变器” (inverter)。在备用UPS中只需要给蓄电池充电,不需要给负载供电,故只有充电机。在双变换UPS中,此装置既为逆变器供电,又给蓄电池充电,故称为整流器/充电机。
整流器是一个整流装置,简单的说就是将交流(AC)转化为直流(DC)的装置。它有两个主要功能:第一,将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器;第二,给蓄电池提供充电电压。因此,它同时又起到一个充电器的作用。
基本介绍 中文名 :整流器 外文名 :rectifier 类别 :电流转换装置 功能 :供电装置及侦测无线电信号 组成 :真空管,引燃管,汞弧等 工作原理,作用,三极体参数,现状,基本要求,二极体整流器,晶闸管整流器,区别,倍压整流器,整流器套用,冷却方式, 工作原理 汽车发电机产生的交流电经过整流器整后变为直流电,但其波形仍然具有不规则的波动,直接影响了车辆点火的准确性;输出电压无法保持相对恒定,造成每次火花塞点火的能量差别,容易使车辆引擎抖动,出现换档顿挫、提速缓慢无力、怠速不稳以及车用空调效率低下等情形。从而大大降低了车载电器设备的性能和使用寿命;再加上高龄汽车的电路系统老化,电路阻阬变高的影响,对车辆的影响也就变得日益明显。电子整流器的作用是帮助车消除杂波干扰、稳定输出电压、提高电源系统的瞬间放电能力、增加扭力输出、加快油门反应、延长电池使用寿命、缩短汽车引擎启动时间、提高点火效率等,尤其是对小排量的车,效果比较明显。 整流器 半导体PN结在正向偏置时电流很大,反向偏置时电流很小。整流二极体就是利用PN结的这种单向导电特性将交流电流变为直流的一种PN结二极体。通常把电流容量在1安以下的器件称为整流二极体,1安以上的称为整流器。常用的半导体整流器有矽整流器和硒整流器,产品规格很多,电压从几十伏到几千伏,电流从几安到几千安。整流器广泛用于各种形式的整流电源中。大功率整流电源要求整流器的电流容量大、击穿电压高、散热性能好,但这种器件的结面积大、结电容大,因而工作频率很低,一般在几十千赫以下。矽材料的禁频宽度较大,导热性能良好,适于制作大功率整流器件。在耐高压的整流装置中常采用高压矽堆,它由多个整流器件的管芯串联组成,其反向耐压由管芯的耐压及串联管芯数决定,最高耐压可达几百千伏。如果高频整流电路用于很高频率下,当交流电压的周期与整流器通态到关态的恢复时间相当时,整流器对高频电压不再起整流作用。为适应高频工作的需要,通常在矽整流器中采用掺金的方法,以缩短注入少数载流子的寿命,从而达到减小恢复时间的目的。 整流器 为了减小器件因过压击穿造成损坏的可能性和提高整流装置的可靠性,可采用矽雪崩整流器。在这种器件中,当反向电压超过允许峰值时,在整个PN结上发生均匀的雪崩击穿,器件可工作在高压大电流下,故能承受相当大的反向浪涌功率。制作这种器件时要求材料缺陷少,电阻率均匀,结面平整,外露结区还应进行适当保护,避免发生表面击穿。硒整流器的抗过载容量大,承受反向浪涌功率的能力也较强。 在以大功率二极体或晶闸管为基础的两种基本类型的整流器中,电网的高压交流功率通过整流器变换为直流功率。提到未来(不久的或遥远的)的其它类型整流器:以不可控二极体前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和1的功率因数载入于电网。 作用 整流器是一个整流装置,简单的说就是将交流(AC)转化为直流(DC)的装置。它有两个主要功能:第一,将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器;
第二,给蓄电池提供充电电压。因此,它同时又起到一个充电器的作用。 三极体参数 三极体的hFE参数与贮存时间ts相关,一般hFE大的三极体ts也较大,过去人们对ts的认识以及ts的测量仪器均较为欠缺,人们更依赖hFE参数来选择三极体。 在开关状态下,hFE的选择通常有以下认识:第一、hFE应尽可能高,以便用最少的基极电流得到最大的工作电流,同时给出尽可能低的饱和电压,这样就可以同时在输出和驱动电路中降低损耗。 整流器 但是,如果考虑到开关速度和电流容限,则hFE的最大值就受到限制;第二、中国的厂家曾经倾向于选用hFE较小的器件,例如hFE为10到15,甚至8到10的三极体就一度很受欢迎(后来,由于基极回路流行采用电容触发线路,hFE的数值有所上升),hFE的数值小则饱和深度小,从而有利于降低电晶体的发热。 实际上,电晶体的饱和深度受到Ib、hFE两个因素的影响,因而通过磁环及绕组参数、基极电阻Rb的调整,也可以降低饱和深度。 现状 如今,业界推出的节能灯和电子镇流器专用三极体都十分注重对贮存时间的控制。因为贮存时间ts过长,电路的振荡频率将下降,整机的工作电流增大易导致三极体的损坏。虽然可以调整扼流圈电感及其他元器件参数来控制整机功率,但ts的离散性,将使产品的一致性差,可靠性下降。例如,在石英灯电子变压器线路中,贮存时间太大的电晶体可能引起电路在低于输出变压器工作极限的频率振荡,从而造成每个周期的末端磁芯饱和,这使得电晶体Ic在每个周期出现尖峰,最后导致器件过热损坏。 如果同一线路上的两个三极体贮存时间相差太大,整机工作电流的上下半波将严重不对称,负担重的那只三极体将容易损坏,线路也将产生更多的谐波和电磁干扰。 实际使用表明,严格控制贮存时间ts并恰当调整整机电路,就可以降低对hFE参数的依赖程度。还值得一提的是,在晶片面积一定的情况下,三极体特性、电流特性与耐压参数是矛盾的,中国市场曾经用BUT11A来做220V40W电子镇流器,其出发点是BVceo、BVcbo数值高,但是绝大部分电子镇流器线路中,已经没有必要过高选择三极体的电压参数。 基本要求 1.输入电流总谐波失真(THD)(总谐波失真THD:交流电流的谐波电流有效值占基波分量有效值的百分比) 6脉冲整流器的输入电流的THD在6脉冲整流器的满载输入电流时应小于33%;采用输入滤波器可将输入电流失真减小到10%。 12脉冲整流器的输入电流的THD在12脉冲整流器的满载时应小于10%,采用输入滤波器可将输入电流总谐波失真减小到5%。 2.交流输入电流限制 整流器/充电机应有交流输入电流限制电路,一般将交流输入电流限制到满载输入电流的115%。在发电机组供电时(此时整流器会接收到一个外部低电压信号,据此判断为是发电机组供电),应将交流输入电流限制到满载输入电流的100%。 3.蓄电池充电电流限制 整流器/充电机应有蓄电池充电电流限流电路,将蓄电池充电电流限制到UPS额定输出容量(KW)的15%。在发电机组供电时(当接收到一个外部低电压信号时),应将蓄电池充电电流限制到零。 4.蓄电池充电电压温度补偿 当采用远端温度检测器时,整流器/充电机应自动调节蓄电池浮充电压(一般按5mv/只/℃)。通常蓄电池的浮充电压为2.25V/只,终止电压为1.67V/只,因此DC母线电压在浮充和终止电压时分别为N×2.25V,N×1.67V(N为蓄电池的只数)。 5.输入功率的逐步增加 整流器/充电机应具有将初始功率要求限制到额定负载的20%,并在10秒的时间间隔内逐渐将输入功率增加到100%额定容量。在冗余UPS系统中,各整流器/充电机的输入功率的加入时间应延迟5至300秒,以减少对发电机组的影响。 6.输入隔离开关 整流器/充电机应有输入隔离开关并有保护。隔离开关应能同时提供满足负载的电流和蓄电池的再充电电流,并能承受较大的短路电流。 7.DC滤波器 整流器/充电机应有输出滤波器以将加在蓄电池的纹波电压减少到最小。整流器的DC输出电压的AC纹波电压应小于浮充电压(RMS)的1%。滤波器应充分保证整流器/充电机的DC输出电压在蓄电池未连线的情况下满足逆变器的要求。 8.蓄电池的再充电 除了为负载供电外,整流器/充电机应能在10倍于放电时间的时间内,将蓄电池的放电功率恢复到95%。蓄电池再充电后,整流器/充电机应使蓄电池保持在满充电状态,直到下一次放电。 二极体整流器 所有整流器类别中最简单的是二极体整流器。在最简单的型式中,二极体整流器不提供任何一种控制输出电流和电压数值的手段。为了适用于工业过程,输出值必须在一定范围内可以控制。通过套用机械的所谓有载抽头变换器可以完成这种控制。作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。 晶闸管整流器 在设计上非常接近二极体整流器的是晶闸管整流器。因为晶闸管整流器的电参数是可控的,所以不需要有载抽头变换器和饱和电抗器。 因为晶闸管整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。注意到的一个优点是晶闸管整流器的调节速度较二极体整流器快。在过程特性的阶跃期间,晶闸管整流器常常调节很快,以致能够避免过电流。其结果是晶闸管系统的过载能力能够设计得比二极体系统小。 区别 镇流器和整流器的区别 把交流电变成直流电的设备就称为整流器。 按照所采用的整流器件,可分为机械式、电子管式和半导体式几类。电感镇流器是一个铁芯电感线圈,电感的性质是当线圈中的电流发生变化时,则线上圈中将引起磁通的变化,从而产生感应电动势,其方向与电流的方向相反,因而阻碍著电流变化。 倍压整流器 最简单的倍压整流(二倍)方式是利用两组简单的半波整流,以指向相反的二极体分别生成两个正负不同的电源输出,并分别加以滤波。连线正负两端可得到交流输入电压两倍的输出电压。此种电路称为德隆电路(德文:Delon-Schaltung)。 如需要的话,此电路也可以提供中间电压,或当作正负双电压的电源来使用。 上述德隆电路可以衍生出另一种变体:在桥式整流的输出端使用两个相串联的电容器作为滤波电容,在滤波电容的中点与与交流输入的一端间联接一个开关。当开关切离时,这个电路会像一个正常的桥式整流;当开关接通时,就会成为前述的德隆电路,产生倍压整流的作用。 举例来说,当交流输入为 100~120V 时,可让开关为通路;当交流输入为 220~240V 时,可让开关为断路;这样便使它很容易在世界上任何电源间切换,产生大约 320V (±15%左右) 的直流电压,以送入一个相对简单的开关模式电源。 格赖纳赫倍压电路可以继续添加二极体和电容器的级联,而形成多倍电压的电压倍增器,称为考克饶夫-沃尔顿产生器电路(英文: Cockcroft–Walton generator),当时是用于粒子加速器。 这样的倍压电路虽可以提供几倍于输入交流峰值的电压,但电流输出和电压稳定度则受到限制。 此类电压倍增器电路常用来提供高电压予旧式电视机的阴极射线管(CRT)、光电倍增管、或电蚊拍。 整流器套用 整流器的主要套用是把交流电源转为直流电源。 由于所有的电子设备都需要使用直流,但电力公司的供电是交流,因此除非使用电池,否则所有电子设备的电源供应器内部都少不了整流器。 至于把直流电源的电压进行转换则复杂得多。 直流-直流转换的一种方法是首先将电源转换为交流(使用一种称为反用换流器的设备),然后使用变压器改变该交流电压,最后再整流回直流电源。 整流器还用在调幅(AM)无线电信号的检波。 信号在检波前可能会先经增幅(把信号的振幅放大),如果未经增幅,则必须使用非常低电压降的二极体。 使用整流器作解调时必须小心地搭配电容器和负载电阻。 电容太小则高频成分传出过多,太大则将抑制讯号。 整流装置也用于提供电焊时所需固定极性的电压。 这种电路的输出电流有时需要控制,此时会以可控矽(一种晶闸管)替换桥式整流中的二极体,并以相位控制触发的方式调整其电压输出。 晶闸管也用于各级铁路机车系统中,以实现牵引马达的微调。 可关断晶闸管(GTO)则可用于从直流电源产生交流,例如在 Eurostar 列车上使用此方式提供三相牵引马达所需的电源。 冷却方式 整流器常用的冷却方式有自然冷却、纯风扇冷却、自然冷却和风扇冷却相结合三种。自然冷却具有无机械故障,可靠性高;无空气流动,灰尘少,有利于散热;无噪音等特点。纯风扇冷却具有设备重量轻,成本低。风扇和自然冷却相结合的技术具有有效减小设备体积和重量,风扇的使用寿命高,风扇故障自适应能力强等特点。
逆变器是什么?
分类: 电脑/网络 >> 硬件
解析:
逆变器
利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下:
第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。此接法中,当第16脚输入大于5V的高电平时,可通过稳压作用降低输出电压,或关断驱动脉冲而实现保护。在它激逆变器中输出超压的可能性几乎没有,故该电路中第16脚未用,由电阻R8接地。
该逆变器采用容量为400VA的工频变压器,铁芯采用45×60mm2的硅钢片。初级绕组采用直径1.2mm的漆包线,两根并绕2×20匝。次级取样绕组采用0.41mm漆包线绕36匝,中心抽头。次级绕组按230V计算,采用0.8mm漆包线绕400匝。开关管VT4~VT6可用60V/30A任何型号的N沟道MOS FET管代替。VD7可用1N400X系列普通二极管。该电路几乎不经调试即可正常工作。当C9正极端电压为12V时,R1可在3.6~4.7kΩ之间选择,或用10kΩ电位器调整,使输出电压为额定值。如将此逆变器输出功率增大为近600W,为了避免初级电流过大,增大电阻性损耗,宜将蓄电池改用24V,开关管可选用VDS为100V的大电流MOS FET管。需注意的是,宁可选用多管并联,而不选用单只IDS大于50A的开关管,其原因是:一则价格较高,二则驱动太困难。建议选用100V/32A的2SK564,或选用三只2SK906并联应用。同时,变压器铁芯截面需达到50cm2,按普通电源变压器计算方式算出匝数和线径,或者采用废UPS-600中变压器代用。如为电冰箱、电风扇供电,请勿忘记加入LC低通滤波器。
湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467