湖北仙童科技有限公司
全国咨询热线:0722-7600323

晶闸管谐振逆变器

发布时间:2024-06-16 06:30:16 人气:

晶闸管中频电源的逆变原理!

       晶闸管中频电源的逆变原理复杂,电路形式又很多,在这里不好计,不过你可以发两张最经典的图上来,你哪里看不懂,我们讨论一下比较好!晶闸管逆变器主要分电压型逆变器与电流型逆变器.电压型逆变器的直流侧并联大电容滤波,逆变器用电感与二极管与负载换相,输出电压为方波,带电机类负载时电流为正弦波.电流型逆变器的直流侧串联大电感滤波,逆变器用电容与二极管与负负载换相,输出电流为方波,带电机类负载时电压为正弦波.具体的换相过程可以参考电力电子教材,一般仔细的看一遍就能明白了,多看几遍就懂了.你也可以拿图来大家讨论.

       EMAIL:zenghouyun@163.com

逆变电焊机的谐波分析

       弧焊逆变电源的谐波分析

       1.1谐波产生原因

       自第一台300A晶闸管弧焊逆变电源以来,弧焊逆变电源有了很大发展,经历了晶闸管逆变,大功率晶体管逆变,场效应逆变以及IGBT逆变,其容量和性能大大提高,目前弧焊逆变电源已成为工业发达国家焊接设备的主流产品[1]。弧焊逆变电源作为一种典型的电力电子装置,虽然具有体积小、质量轻、控制性能好等优点,但其电路中存在整流和逆变等环节,导致电流波形畸变,产生大量的高次谐波。高次电压和电流谐波之间存在严重相移,导致焊机的功率因数很低。谐波产生的原因主要有以下两方面因素:

       (1)逆变电源内部干扰源逆变电源是一个强电和弱电组合的系统。在焊接过程中,焊接电流可达到几百甚至上千安培。因电流会产生较大的电磁场,特别在逆变主电路采用高逆变频率的焊接电源系统中,整流管整流,高频变压器漏磁,控制系统振荡,高频引弧,功率管开关等均会产生较强的谐波干扰。

       其次,钨极氩弧焊机如果采用高频引弧时,由于焊机利用频率达几十万赫兹,电压高达数千伏的高频高压击穿空气间隙形成电弧,因此高频引弧也是一个很强的谐波干扰源。对于计算机控制的智能化弧焊逆变电源来说,由于采用的计算机控制系统运行速度越来越高,因此控制板本身也成了一个谐波干扰源,对控制板的布线也提出了较高的要求。

       (2)逆变电源外部干扰源电网上的污染对电源系统来说是较为严重的干扰,由于加到电网上的负载千变万化,这些负载或多或少对电网产生谐波干扰,如大功率设备的使用使电网电压波形产生畸变,偶然因素造成瞬时停电,高频设备的开启造成电网电压波形具有高频脉冲、尖峰脉冲成分。

       另外在焊接车间内,由于不同焊接电源在使用时接地线可能相互连接,因此如不采取相应的措施,高频成分的谐波信号很容易窜入控制系统,使电源不能正常工作,甚至损坏。

       1.2谐波的特点及危害

       弧焊逆变电源以其高效率电能转换著称,随着功率控制器件向实用化和大容量化方向发展,弧焊逆变电源也将跨入高频化、大容量的时代。弧焊逆变电源对电网来说,本质上是一个大的整流电源,由于电力电子器件在换流过程中产生前后沿很陡的脉冲,从而引发了严重的谐波干扰。逆变电源的输入电流是一种尖角波,使电网中含有大量高次谐波。高次电压和电流谐波之间存在严重相移,导致焊机的功率因数很低。低频畸变问题是当前电力电子设备的一个共性问题,目前在通信行业、家电行业都已引起相当的重视。另外,目前逆变焊机多采用硬开关方式,在功率元件的开关过程中不可避免地对空间产生谐波干扰。这些干扰经近场和远场耦合形成传导干扰,严重污染周围电磁环境和电源环境,这不仅会使逆变电路自身的可靠性降低,而且会使电网及临近设备运行质量受到严重影响。

       弧焊逆变电源常用的谐波抑制措施

       2.1无源滤波器(PassiveFilter,简称PF)

       传统的谐波抑制和无功功率补偿的方法是电力无源滤波技术,又称间接滤除法,即使用电力电容器等无源器件构成无源滤波器,与需要补偿的非线性负载并联,为谐波提供一个低阻通路,同时提供负载所需的无功功率。具体而言是将畸变的50Hz正弦波分解成基波及相关的各次主谐波成分,然后采用串联的谐振原理,将由L,C(或者还有R)组成的各次滤波支路调谐(或偏调谐)到各主要谐波频率形成低阻通道而将其滤除[2-3]。它是在已产生谐波的情况下,被动地防御,减轻谐波对电气设备的危害。

       无源滤波方案成本低,技术成熟,但是也存在以下不足:(1)滤波效果受系统阻抗的影响;(2)由于其谐振频率固定,对于频率偏移的情况效果不好;(3)与系统阻抗可能发生串联或并联谐振,造成过负荷。

       在中小功率场合,正逐步被有源滤波器所替代。

       2.2有源滤波器(ActiveFilter,简称AF)早在20世纪70年代初,就有学者提出有源功率滤波器的基本原理,但由于当时缺乏大功率开关元件和相应的控制技术,只能用线性放大器等方法产生补偿电流,存在着效率低、成本高、难以大容量化等致命弱点而未能实用化。随着电力半导体开关元件性能的提高,以及相应的PWM技术的发展,使得研制大容量低损耗的谐波电流发生器成为可能,从而使有源滤波技术走向实用化,当系统中出现谐波发生源时,用某种方法产生一个和谐波电流大小相等、相位相反的补偿电流,且和成为谐波发生源的电路并联连接来抵消谐波发生源的谐波,使直流侧的电流仅为基波分量,不含有谐波成分。当谐波发生源产生的谐波不能被预计出是何种高次谐波电流,且随时发生变化时,则必须从负载电流il中检测出谐波电流ih信号,经检测后的谐波电流ih信号,经过调制器进行调制,并按制定的方法转换为开关方式控制电流逆变器工作方式,使电流逆变器产生补偿电流ifm并注入到电路中,以便抵消谐波电流ih逆变主电路一般采用DC/AC全桥式逆变器电路,其中的开关元件可用GTO、GTR、SIT或IGBT等大功率可控型电力半导体元件,借助开关元件的通断,控制输出电流波形,产生所需的补偿电流。

       电力有源滤波器作为抑制电网谐波和补偿无功功率,改善电网供电质量最有希望的一种电力装置,与无源电力滤波器相比,具有以下优点[5]:(1)实现了动态补偿,可对频率和大小都变化的谐波以及变化的无功功率进行补偿,对补偿对象的变化有极快的响应;(2)可同时对谐波和无功功率进行补偿,且补偿无功功率的大小可做到连续调节;(3)补偿无功功率时不需储能元件,补偿谐波时所需储能元件容量也不大;(4)即使补偿对象电流过大,电力有源滤波器也不会发生过载,并能正常发挥补偿作用;(5)受电网阻抗的影响不大,不容易和电网阻抗发生谐振;(6)能跟踪电网频率的变化,故补偿性能不受频率变化的影响;(7)既可对一个谐波和无功功率单独补偿,也可对多个谐波和无功功率集中补偿。 弧焊逆变电源中存在大量谐波,危害严重。为了抑制谐波,提高功率因数,必须采取相应的抑制措施。传统的PF方式存在明显不足,限制了它的应用,而AF方式能弥补PF的不足,有效抑制弧焊逆变电源的谐波,得到了越来越广泛的应用。软开关技术在一定程度上,也可以实现良好的滤波效果。

逆变器工作原理 看看这专业的解释

       逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥、控制逻辑和滤波电路组成。下面让我们来深入的了解逆变器工作原理。

一、逆变器工作原理

       1、全控型逆变器工作原理:为通常使用的单相输出的全桥逆变主电路,交流元件采用IGBT管Q11、Q12、Q13、Q14。并由PWM脉宽调制控制IGBT管的导通或截止。

       当逆变器电路接上直流电源后,先由Q11、Q14导通,Q1、Q13截止,则电流由直流电源正极输出,经Q11、L或感、变压器初级线圈图1-2,到Q14回到电源负极。当Q11、Q14截止后,Q12、Q13导通,电流从电源正极经Q13、变压器初级线圈2-1电感到Q12回到电源负极。此时,在变压器初级线圈上,已形成正负交变方波,利用高频PWM控制,两对IGBT管交替重复,在变压器上产生交流电压。由于LC交流滤波器作用,使输出端形成正弦波交流电压。

       当Q11、Q14关断时,为了释放储存能量,在IGBT处并联二级管D11、D12,使能量返回到直流电源中去。

       2、半控型逆变器工作原理:半控型逆变器采用晶闸管元件。改进型并联逆变器的主电路如图4所示。图中,Th1、Th2为交替工作的晶闸管,设Th1先触发导通,则电流通过变压器流经Th1,同时由于变压器的感应作用,换向电容器C被充电到大的2倍的电源电压。按着Th2被触发导通,因Th2的阳极加反向偏压,Th1截止,返回阻断状态。这样,Th1与Th2换流,然后电容器C又反极性充电。如此交替触发晶闸管,电流交替流向变压器的初级,在变压器的次级得到交流电。

       在电路中,电感L可以限制换向电容C的放电电流,延长放电时间,保证电路关断时间大于晶闸管的关断时间,而不需容量很大的电容器。D1和D2是2只反馈二极管,可将电感L中的能量释放,将换向剩余的能量送回电源,完成能量的反馈作用。

二、逆变器分类详解

       1、按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。

       2、按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。

       3、按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。

       4、按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。

       5、按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。

       6、按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。

       7、按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。

       8、按逆变器控制方式分,可分为调频式(PFM)逆变器和调脉宽式(PWM)逆变器。

       9、按逆变器开关电路工作方式分,可分为谐振式逆变器,定频硬开关式逆变器和定频软开关式逆变器。

       10、按逆变器换流方式分,可分为负载换流式逆变器和自换流式逆变器。

以上对逆变器工作原理及分类进行了详解,希望对你的理解能有帮助。更多请持续关注土巴兔装修网。

       土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:/yezhu/zxbj-cszy.phpto8to_from=seo_zhidao_m_jiare&wb,就能免费领取哦~

中频熔炼炉是用串联谐振逆变的多还是并联谐振逆变的多?(晶闸管逆变)为什么?最佳答案给加分。

       现在的中频炉不是单独的窜并联了,而是既窜连又并联了,把感应圈和电容串联,然后再和电容并联,先串联是为了提高感应圈两端的电压,并联是为了提高功率因数,还有使负载呈现容性,为关断逆变管做准备。单独的串联谐振炉适合透热和轧钢加热,它适合稳定的负载,并联炉适合熔炼。但现在淘汰了并联谐振炉了,他的效率没有混联的炉子高。所以说现在基本是混联炉了,你问的两样炉子都不在熔炼炉之内了。现在的一些教材书上还是那么说,实际它已经撵不上时代了。我看过现在的大学教材,那上还是说并联适合熔炼呢,哈哈哈我二十年前学的教材到现在还没多少变化呢。

并联谐振式逆变电路晶闸管的换流方式为()。

       并联谐振式逆变电路晶闸管的换流方式为()。

        A.器件换流

        B.电网换流

        C.负载换流

        D.脉冲换流

        正确答案:C

湖北仙童科技有限公司 高端电力电源全面方案供应商 江生 13997866467

返回列表 推荐新闻
 12V3KW逆变器 特种车 救护车 房车充电逆变一体机

在线留言